REFERENCES
[1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities
between Banach space, Ann. Mat. Pura. Appl., 93 (1972), 231-247.
[2] R. Chiappinelli, J. Mawhin and R. Nugari, ,Generalized Ambrosetti-Prodi conditions for nonlinear
two-point boundary value problems, J. Diff. Eq., 69 (1997), no.3, 422-434.
[3] S. H. Ding and J. Mawhin, A multiplicity result for periodic solutions of higher order ordinary
differential equations, Differential and Integral Equations, 11 (1988), no.1, 31-40.
[4] C. Fabry, J. Mawhin and M. Nkashama, A multiplicity result for periodic solutions of forced
nonlinear second order ordinary differential equations, Bull. London Math. Soc., 18 (1986), 173-180.
[5] N. Hirano and W. S. Kim, Multiplicity and stability result for semilinear parabolic equations,
Discrete and Continuous Dynamical Systems, 2 (1996), no.2, 271-280.
[6] N. Hirano and W. S. Kim, Existence of stable and unstable solutions for semilinear parabolic
problems with a jumping nonlinearity, Nonlinear Analysis, 26 (1996), no.6, 271-280.
[7] N. Hirano and W. S. Kim, Multiple existence of periodic solutions for Lienard system, Diff.
Int. Eq., 8 (1995), no.7, 1805 - 1811.
[8] W. S. Kim, Multiplicity result for semilinear parabolic equations, Comm. Korean Math Soc., 12 (1997), no.4, 921-933.
[9] W. S. Kim, Existence of periodic solutions for nonlinear Lienard systems, Int. J. Math., 18 (1995), no.2, 265-272.
[10] W. S. Kim, Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations,
J. Math. Anal. Appl., 197 (1996), 735-748.
[11] W. S. Kim, Multiplicity result for semilinear dissipative hyperbolic equations, J. Math. Anal.
Appli., 231 (1999), 34-36.
[12] W. S. Kim, Boundary value problem for nonlinear telegraph equations with superlinear growth,
Nonlinear Analysis, T.M.A., 12 (1988), no.12, 1371-1378.
[13] A. C. Lazer and P. J. Mckenna, Multiplicity results for a class of semi-linear elliptic and
parabolic boundary value problems, J. Math. Anal., 107 (1985), 371-395.
[14] M. N. Nkashma and M. Willem, Time periodic solutions of boundary value problems for nonlinear
heat, telegraph and beam equations, Seminarire de mathematique, Universite Catholique
de Louvain, Rapport no 54 (1984).