MULTIPLICITY RESULT FOR PERIODIC SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS

TitleMULTIPLICITY RESULT FOR PERIODIC SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS
Publication TypeJournal Article
Year of Publication2002
AuthorsKim, WSe
Volume6
Issue1
Start Page135
Pagination12
Date Published2002
ISSN1083-2564
AMS35K20, 35K55
Abstract

Ambrosetti-Prodi type multiplicity for periodic solutions of semilinear parabolic equations with coercive growth nonlinear term is treated.

URLhttp://www.acadsol.eu/en/articles/6/1/10.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities
between Banach space, Ann. Mat. Pura. Appl., 93 (1972), 231-247.
[2] R. Chiappinelli, J. Mawhin and R. Nugari, ,Generalized Ambrosetti-Prodi conditions for nonlinear
two-point boundary value problems, J. Diff. Eq., 69 (1997), no.3, 422-434.
[3] S. H. Ding and J. Mawhin, A multiplicity result for periodic solutions of higher order ordinary
differential equations, Differential and Integral Equations, 11 (1988), no.1, 31-40.
[4] C. Fabry, J. Mawhin and M. Nkashama, A multiplicity result for periodic solutions of forced
nonlinear second order ordinary differential equations, Bull. London Math. Soc., 18 (1986), 173-180.
[5] N. Hirano and W. S. Kim, Multiplicity and stability result for semilinear parabolic equations,
Discrete and Continuous Dynamical Systems, 2 (1996), no.2, 271-280.
[6] N. Hirano and W. S. Kim, Existence of stable and unstable solutions for semilinear parabolic
problems with a jumping nonlinearity, Nonlinear Analysis, 26 (1996), no.6, 271-280.
[7] N. Hirano and W. S. Kim, Multiple existence of periodic solutions for Lienard system, Diff.
Int. Eq., 8 (1995), no.7, 1805 - 1811.
[8] W. S. Kim, Multiplicity result for semilinear parabolic equations, Comm. Korean Math Soc., 12 (1997), no.4, 921-933.
[9] W. S. Kim, Existence of periodic solutions for nonlinear Lienard systems, Int. J. Math., 18 (1995), no.2, 265-272.
[10] W. S. Kim, Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations,
J. Math. Anal. Appl., 197 (1996), 735-748.
[11] W. S. Kim, Multiplicity result for semilinear dissipative hyperbolic equations, J. Math. Anal.
Appli., 231 (1999), 34-36.
[12] W. S. Kim, Boundary value problem for nonlinear telegraph equations with superlinear growth,
Nonlinear Analysis, T.M.A., 12 (1988), no.12, 1371-1378.
[13] A. C. Lazer and P. J. Mckenna, Multiplicity results for a class of semi-linear elliptic and
parabolic boundary value problems, J. Math. Anal., 107 (1985), 371-395.
[14] M. N. Nkashma and M. Willem, Time periodic solutions of boundary value problems for nonlinear
heat, telegraph and beam equations, Seminarire de mathematique, Universite Catholique
de Louvain, Rapport no 54 (1984).