[1] F. Palmieri, U. Fiore, Containing large-scale worm spreading in the Internet by cooperative distribution of traffic filtering policies, Computers & Security, 27 (2008), 48-62.
[2] U. Zurutuza, D. Zamboni, A Data Mining Approach for Analysis of Worm Activity Through Automatic Signature Generation, AISec’08 Proceedings of the 1st ACM workshop on Workshop on AISec, (2008), 61-70.
[3] O. A. Toutonji, S.-M. Yoo, M. Park, Stability analysis of VEISV propagation modeling for network worm attack, Applied Mathematical Modelling, 36 (2012), 2751-2761.
[4] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, N. Weaver, Inside the slammer worm, IEEE Magaz. Secur. Privacy, 1 No. 4 (2003), 33-39.
[5] C. Shannon, D. Moore, The Spread of the Code-Red Worm, http://www.caida.org/analysis/security/code-red/coderedv2 analysis. xml.
[6] R. Banks, Growth and Diffusion Phenomena: Mathematical Frameworks and Applications, Springer Verlag, Berlin (1991).
[7] N. Kyurkchiev, A. Iliev, A note on the power law logistic model, Proc. of the NTADES Series of AIP, (2019). (to appear)
[8] F. Hausdorff, Set theory (2 ed.), Chelsea Publ., New York (1962)
[1957], ISBN 978-0821838358, Republished by AMS-Chelsea (2005).
[9] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-76045-7.
[10] N. Kyurkchiev, A. Iliev, S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing (2017), ISBN: 978-3-33033143-3.
[11] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.
[12] N. Kyurkchiev, A. Iliev, A. Rahnev, Some Families of Sigmoid Functions: Applications to Growth Theory, LAP LAMBERT Academic Publishing (2019), ISBN: 978-613-9-45608-6.
[13] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[14] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory: Part 2, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-87794-2.
[15] D. Moore, C. Shannon, J. Brown, Code-Red: a case study on the spread and victims of an Internet worm, Internet Measurement Workshop (IMW), (2002), 273-284.
[16] C. Zou, W. Gong, D. Towsley, Code red worm propagation modeling and analysis, CCS ’02 Proceedings of the 9th ACM conference on Computer and communications security, (2002), 138-147.
[17] C. Zou, W. Gong, D. Towsley, Worm propagation modeling and analysis under dynamic quarantine defense, Proceedings of the 2003 ACM workshop on Rapid malcode, October 27-27, (2003), Washington, DC, USA.
[18] C. Zou, D. Towsley, W. Gong, On the performance of internet worm scanning strategies, Performance Evaluation, 63, No. 7 (2006), 700-723.
[19] C. Zou,W. Gong, D. Towsley, L. Gao, The monitoring and early detection of internet worms, IEEE/ACM Transactions on Networking (TON), 13, No. 5 (2005), 961-974.
[20] P. Wang, L. Wu, R. Cunningham, C. Zou, Honeypot detection in advanced botnet attacks, International Journal of Information and Computer Security, 4, No. 1 (2010), 30-51.
[21] A. Visheratin, M. Melnik, D. Nasonov, N. Butakov, A. Boukhanovsky, Hybrid scheduling algorithm in early warning systems, Future Generation Computer Systems, 79, No. P2 (2018), 630-642.
[22] J. Jerkins, J. Stupiansky, Mitigating IoT insecurity with inoculation epidemics, Proceedings of the ACMSE 2018 Conference, March 29-31, (2018), 1-6, Richmond, Kentucky.
[23] Q. Xiao, S. Chen, M. Chen, Y. Ling, Hyper-Compact Virtual Estimators for Big Network Data Based on Register Sharing, ACM SIGMETRICS Performance Evaluation Review, 43, No. 1 (2015), 417-428.
[24] H. Asghari, M. Ciere, M. Van Eeten, Post-mortem of a zombie: conficker cleanup after six years, Proceedings of the 24th USENIX Conference on Security Symposium, August 12-14, (2015), 1-16, Washington, D.C.
[25] A. Dainotti, A. King, K. Claffy, F. Papale, A. Pescape, Analysis of a ”/0” stealth scan from a botnet, IEEE/ACM Transactions on Networking (TON), 23, No. 2 (2015), 341-354.
[26] D. Lee, J. Kim, K. Kim, A study on abnormal event correlation analysis for convergence security monitor, Cluster Computing, 16, No. 2 (2013), 219-227.
[27] E. Magkos, M. Avlonitis, P. Kotzanikolaou, M. Stefanidakis, Toward early warning against Internet worms based on critical-sized networks, Security and Communication Networks, 6, No. 1 (2013), 78-88.
[28] S. Xu, W. Lu, L. Xu, Push- and pull-based epidemic spreading in networks: Thresholds and deeper insights, ACM Transactions on Autonomous and Adaptive Systems (TAAS), 7, No. 3 (2012), 1-26.
[29] C. Shannon, D. Moore, The Spread of the Witty Worm, IEEE Security & Privacy, July/August, (2004), 46-50.
[30] A. Mohammed, S. Nor, M. Marsono, Analysis of Internet Malware Propagation Models and Mitigation Strategies, IRACST International Journal of Computer Networks and Wireless Communications (IJCNWC), 2, No. 1 (2012), 16-20.
[31] S. Staniford, V. Paxsony, N. Weaver, How to own the Internet in Your Spare Time, Proceedings of the 11th USENIX Security Symposium, San Francisco, California, USA, August 5-9, (2002).
[32] S. Fei, L. Zhaowen, M. Yan, A survey of Internet Worm Propagation Models, Proceedings of IC-BNMT2009, (2009), 453-457.
[33] S. Fei, L. Zhaowen, M. Yan, Worm Propagation based on Two-Factor Model, Proceedings of 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, (2009), 4 pp.
[34] D. Smith, L. Moore, The SIR model for the Spread of Diseases, JOMA, (2004).
[35] J. Kim, S. Radhakrishnan, S. Dhall, Measurement and Analysis of worm propagation on Internet network topology, Proceedings of 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969), 495-500.
[36] T. Li, Z. Guan, Y. Wang, The Stability of a Worm Propagation Model with Time Delay on Homogeneous Networks, Proceedings of International Conference on Intelligent Control and Information Processing, August 13-15, (2010) - Dalian, China, 753-755.
[37] T. Li, Z.-H. Guan, Y. Wang, Y. Li, Impulsive Control of the Spread of worm with Nonlinear Incidence Rates, Proceedings of 2010 Chinese Control and Decision Conference, (2010), 966-969.
[38] Y. Wang, Z.-H. Guan, T. Li, S. Zhang, Modeling and Analyzing the Spread of Worm with Impulsive Effect on Homogeneous Network, Proceedings of 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), (2010), V7-501-V7-504.
[39] C. Junhua,W. Shengjun, Modeling and Analyzing the Spread of worms with Bilinear Incidence Rate, Proceedings of 2009 Fifth International Conference on Information Assurance and Security, (2009), 167-170.
[40] W. Shaojie, L. Qiming, D. Bo, M. Weining, Analysis of a Mathematical Model for Worm Virus Propagation with time delay, Proceedings of 2009 Second International Conference on Environmental and Computer Science, (2009), 375-379.
[41] D. Zhang, Y. Wang, SIRS: Internet Worm Propagation and Application, Proceedings of 2010 International Conference on Electrical and Control Engineering, (2010), 3029-3032.
[42] Q. Liu, R. Xu, S. Wang, Modeling and Analysis of an SIRS Model for worm Propagation, Proceedings of 2009 International Conference on Computational Intelligence and Security, (2009), 361-365.
[43] S. Fei, L. Zhao-wen, M. Yan, Modeling and Analysis of Internet worm propagation, The Journal of China Universities of Posts and Telecommunications, 17, No. 4 (2010), 63-68.
[44] J. Wang, C. Xia, Q. Liu, A novel Model for the Internet Worm Propagation, Proceedings of 2010 Sixth International Conference on Natural Computation (ICNC 2010), (2010), 2885-2888.
[45] F. Wang, J. Song, Y. Dong, J. Gu, Epidemic models applied to worms on internet, Proceedings of 2009 Second International Conference on Intelligent Networks and Intelligent Systems, (2009), 160-163.
[46] Z. Wei, Q. Facheng, C. Shiqi, W. Ruchuan, The Study of Network Worm Propagation Simulation, Proceedings of 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), (2010), V9-295-V9-299.
[47] M. Liuqi, The research and development of worm defense strategies, Proceedings of 2010 3rd International Conference on Computer Science and Information Technology, (2010), 168-171.
[48] F.Wang, Y. Zhang, C. Wang, J. Ma, S. Moon, Stability analysis of a SEIQV epidemic for rapid spreading worms, Computer & Security, 29 (2010), 410-418.
[49] Y. Yao, H. Guo, F. Gao, G. Yu, The Worm Propagation Model with pulse Quarantine Strategy, Proceedings of 2010 International Conference on Multimedia Information Networking and Security, (2010), 269-273.
[50] H. Zhang, W. Su, W. Quan, Smart Collaborative Identifier Network: A Promising Design for Future Internet, Springer-Verlag, Berlin (2016).
[51] X. Wang, J. Zhu, H. Lin, X. Su, Y. Jiang, Modeling Propagation of Active P2P Worm in Chord Network, In: Advances in Intelligent and Soft Computing, J. Kacprzyk eds., 133 (2012), S. Sambath & E. Zhu (Eds.), Frontiers in Computer Education, 383-390.
[52] Y. Xiao, F. Li, H. Chen, eds., Handbook of Security and Networks, World Scientific, Singapore (2011).
[53] S. Sellke, N. Shroff, S. Bagchi, Modeling and Automated Containment of Worms, Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN05), (2005), 10 pp.
[54] W. Yu, C. Boyer, S. Chellappan, D. Xuan, Peer-to-peer system-based active worm attacks: modeling and analysis, IEEE International Conference on Communications, 2005, (2005), 295-300.
[55] S. Zhang,Z. Jin, J. Zhang, The Dynamical Modeling Analysis of the Spreading of Passive Worms in P2P Networks, Discrete Dynamics in Nature and Society, 2018, Article ID 1656907, (2018), 13 pp.
[56] G. Yan, S. Eidenbenz, Modeling Propagation Dynamics of Bluetooth Worms (Extended Version), IEEE Transactions on Mobile Computing, 8, No. 3 (2009), 353-367.
[57] S. Sellke, N. Shroff, S. Bagchi, Modeling and Automated Containment of Worms, IEEE Transactions on Dependable and Secure Computing, 5, No. 2 (2008), 71-86.
[58] S. Peng, M. Wua, G. Wang, S. Yu, Propagation Model of Smartphone Worms Based on Semi-Markov Process and Social Relationship Graph, Computers & Security, 44 (2014), 92-103.
[59] N. Kyurkchiev, A. Iliev, A. Rahnev, T. Terzieva, A new analysis of Code Red and Witty worms behavior, Communications in Applied Analysis, 23, No. 2 (2019), 267-285.
[60] A. Iliev, N. Kyurkchiev, A. Rahnev, T. Terzieva, Some New Approaches for Modelling Large-Scale Worm Spreading on the Internet. II, Neural, Parallel, and Scientific Computations, 27 (2019), 23-32.
[61] M. Sandee, CryptoLocker ransomware intelligence report, Fox-IT, (2014).
[62] P. Szor, The Art of Computer Virus Research and Defense, Addison Wesley Professional, (2005), ISBN: 0-321-30454-3.
[63] < http : //www.pisces − conservation.com/growthhelp/ index.html?von bertalanffy.htm >.
[64] Kyurkchiev N., S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54, No. 1 (2016), 109-119.
[65] R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: SCAN 2014 Proceedings, LNCS, ed. by J.W.von Gudenberg, Springer, Berlin, (2015).
[66] L. Coroianu, D. Costarelli, S. Gal, G. Vinti, The max-product generalized sampling operators: convergence and quantitative estimates, Applied Mathematics and Computation, (2019), doi: 10.1016/j.amc.2019.02.076.
[67] Costarelli, D., R. Spigler, Constructive Approximation by Superposition of Sigmoidal Functions, Anal. Theory Appl., 29, No. 2 (2013), 169-196.
[68] C. A. Visaggio, Android Security, Universita degli Studi del Sannio, (2014).
[69] Kaspersky Security Bulletin 2015, Kaspersky Lab (2016).
[70] Kaspersky Security Bulletin: Overall Statistics for 2017, Kaspersky Lab (2018).
[71] B. Al-rimy, M. Maarof, S. Shaid, Ransomware threat success factors, taxonomy, and countermeasures: A survey and research directions, Computers & Security, 74 (2018), 144-166.
[72] L. I. McAfee, Security, editor, Understanding Ransomware and strategies to defeat it, (2016).
[73] Kaspersky Security Bulletin 2016, Kaspersky Lab (2017).