ESTIMATION OF THE DISTRIBUTION OF RANDOM PARAMETERS IN DISCRETE TIME ABSTRACT PARABOLIC SYSTEMS WITH UNBOUNDED INPUT AND OUTPUT: APPROXIMATION AND CONVERGENCE

TitleESTIMATION OF THE DISTRIBUTION OF RANDOM PARAMETERS IN DISCRETE TIME ABSTRACT PARABOLIC SYSTEMS WITH UNBOUNDED INPUT AND OUTPUT: APPROXIMATION AND CONVERGENCE
Publication TypeJournal Article
Year of Publication2019
AuthorsSIRLANCI, MELIKE, LUCZAK, SUSANE, ROSEN, IG
Volume23
Issue2
Start Page287
Pagination44
Date Published01/2019
ISSN1083-2564
AMSabstract parabolic systems, distributed parameter systems, distribution estimation, random parameters, regularly dissipative operators
Abstract

A finite dimensional abstract approximation and convergence theory is developed for estimation of the distribution of random parameters in infinite dimensional discrete time linear systems with dynamics described by regularly dissipative operators and involving, in general, unbounded input and output operators. By taking expectations, the system is re-cast as an equivalent abstract parabolic system in a Gelfand triple of Bochner spaces wherein the random parameters become new space-like variables. Estimating their distribution is now analogous to estimating a spatially varying coefficient in a standard deterministic parabolic system. The estimation problems are approximated by a sequence of finite dimensional problems. Convergence is established using a state space-varying version of the Trotter-Kato semigroup approximation theorem. Numerical results for a number of examples involving the estimation of exponential families of densities for random parameters in a diffusion equation with boundary input and output are presented and discussed.

URLhttps://acadsol.eu/en/articles/23/2/4.pdf
DOI10.12732/caa.v23i2.4
Refereed DesignationRefereed
Full Text

[1] H. T. Banks, J. A. Burns, and E. M. Cliff, Parameter estimation and identification for systems with delays, SIAM Journal on Control and Optimization, 19, no. 6 (1981), 791-828, doi: 10.1137/0319051.

[2] H. T. Banks, K. B. Flores, I. G. Rosen, E. M. Rutter, Melike Sirlanci, and Clayton Thompson, The prohorov metric framework and aggregate data inverse problems for random pdes, Communications in Applied Analysis, 22, no. 3 (2018), 415-446, doi: 10.12732/caa.v22i3.6.

[3] H. T. Banks and K. Ito, A unified framework for approximation in inverse problems for distributed parameter systems, Control Theory Advanced Technology, 4, no. 1 (1988), 73-90, url: https://apps.dtic.mil/dtic/tr/fulltext/u2/a193780.pdf.

[4] H. T. Banks, P. Kareiva, and P. K. Lamm, Estimation techniques for transport equations, In: Mathematics in Biology and Medicine, pages 428-438, Springer, 1985, url: https://link.springer.com/chapter/10.1007/978-3-642-93287-8 58.

[5] H. T. Banks and Karl Kunisch, Estimation Techniques for Distributed Parameter Systems, Springer Science & Business Media, 2012, url: https://www.springer.com/us/book/9780817634339.

[6] H. T. Banks and P. K. Lamm, Estimation of variable coefficients in parabolic distributed systems, IEEE Transactions on Automatic Control, 30, no. 4 (1985), 386-398, url: doi: 10.1109/TAC.1985.1103955

[7] H. T. Banks and W. Clayton Thompson, Least squares estimation of probability measures in the prohorov metric framework, Technical report, DTIC Document, 2012.

[8] Tan Bui-Thanh, Carsten Burstedde, Omar Ghattas, James Martin, Georg Stadler, and Lucas C. Wilcox, Extreme-scale UQ for Bayesian inverse problems governed by PDEs, In SC12, November 10-16, url: https://ieeexplore.ieee.org/document/6468442.

[9] Tan Bui-Thanh, Omar Ghattas, James Martin, and Georg Stadler, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion, SIAM J. Sci. Stat. Comp., 35, no. 6, A2494A2523, doi: 10.1137/12089586X.

[10] Daniela Calvetti, Jario P. Kaipio, and Erkki Somersalo, Inverse problems in the Bayesian framework, Inverse Problems, 30:1-4, 2014, url: iopscience.iop.org/article/10.1088/0266-5611/30/11/110301/pdf, doi: 10.1088/0266-5611/30/11/110301.

[11] Stephen L Campbell and Carl D Meyer, Generalized Inverses of Linear Transformations, SIAM, 2009, url: http://bookstore.siam.org/cl56/.

[12] George Casella and Roger L Berger, Statistical Inference, volume 2, Duxbury, Pacific Grove, CA, 2002, url: https://books.google.com/books/about/Statistical Inference.html? id=0x vAAAAMAAJ.

[13] Ruth F Curtain and Dietmar Salamon, Finite-dimensional compensators for infinite-dimensional systems with unbounded input operators, SIAM Journal on Control and Optimization, 24(4):797- 816, 1986,
url: https://epubs.siam.org/doi/10.1137/0324050, doi: 10.1137/0324050.

[14] Zheng Dai, I Gary Rosen, Chunming Wang, Nancy Barnett, and Susan E Luczak, Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors, Mathematical Biosciences and Engineering: MBE, 13(5):911, 2016, url: http://www.aimsciences.org/journals/displayArticlesnew.jsp? paperID= 12739.

[15] Masoumeh Dashti and Andrew M. Stuart, The Bayesian approach to inverse problems, In R. Ghanem et al., editor, Handbook of Uncertainty Quantification, pages 311-428. Springer International Publishing Switzerland, 2017, url: https://www.springer.com/us/book/9783319123844.

[16] M. Davidian and D. Giltinan, Nonlinear Models for Repeated Measurement Data, Chapman and Hall, New York, 1995, url: https://www.crcpress.com/Nonlinear-Models-for-Repeated- Measurement-Data/Davidian-Giltinan/p/book/9780412983412.

[17] M. Davidian and D. M. Giltinan, Nonlinear models for repeated measurement data: An overview and update, Journal of Agricultural, Biological and Environmental Statistics, 8:387-419, 2003, url: https://link.springer.com/article/10.1198/1085711032697.

[18] E. Demidenko, Mixred Models, Theory and Applications, Second Edition, John Wiley and Sons, Hoboken, 2013, url: https://www.wiley.com/enus/ Mixed+Models

[19] Miguel A Dumett, I Gary Rosen, J Sabat, A Shaman, L Tempelman, C Wang, and R. M. Swift, Deconvolving an estimate of breath measured blood alcohol concentration from biosensor collected transdermal ethanol data, Applied Mathematics and Computation, 196(2):724-743, 2008, url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597868/, doi 10.1016/j.amc.2007.07.026.

[20] Claude Jeffrey Gittelson, Roman Andreev, and Christoph Schwab, Optimality of adaptive galerkin methods for random parabolic partial differential equations, J. Computational Applied Mathematics, 263:189-201, 2014, doi 10.1016/j.cam.2013.12.031.

[21] Tosio Kato, Perturbation Theory for Linear Operators, volume 132, Springer Science & Business Media, 2013, url: https://www.springer.com/us/book/9783540586616. 

[22] Dominick A. Labianca, The chemical basis of the breathalyzer: a critical analysis, J. Chem. Educ, 67(3):259-261, 1990, url: https://pubs.acs.org/doi/abs/10.1021/ed067p259?journalCode=jceda8, doi: 10.1021/ed067p259.

[23] A FJ Levi and I Gary Rosen, A novel formulation of the adjoint method in the optimal design of quantum electronic devices, SIAM Journal on Control and Optimization, 48(5):3191-3223, 2010, doi: 10.1137/070708330.

[24] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber¨ucksichtigung der Anwendungsgebiete. Springer-Verlag, 1971, url: https://books.google.com/books?id=aL9tlwEACAAJ.

[25] E Nyman and A Palml¨ov, The elimination of ethyl alcohol in sweat, Acta Physiologica, 74(2):155-159, 1936, url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-1716.1936. tb01150.x, doi: 10.1111/j.1748-1716.1936.tb01150.x.

[26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences. Springer, 1983, url: https://books.google.com/books?id=80XYPwAACAAJ.

[27] Anthony J Pritchard and Dietmar Salamon, The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators, SIAM Journal on Control and Optimization, 25(1):121- 144, 1987, doi: 10.1137/0325009.

[28] I Gary Rosen, Susan E Luczak, and Jordan Weiss, Blind deconvolution for distributed parameter systems with unbounded input and output and determining blood alcohol concentration from transdermal biosensor data, Applied Mathematics and Computation, 231:357-376, 2014, url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972634/, doi: 10.1016/j.amc.2013.12.099

[29] M. H. Schultz, Spline Analysis, Prentice-Hall Series in Automatic Computation. Pearson Education, Limited, 1972, url: https://books.google.com/books?id=AdRQAAAAMAAJ.

[30] Christoph Schwab and Claude Jeffrey Gittelson, Sparse tensor discretizations of high-dimensional parametric and stochastic pdes, Acta Numerica, 20:291467, 2011, url: https://www.cambridge.org/core/journals/actanumerica/article/sparse-tens... highdimensional-parametric-and-stochasticpdes/ A46BD443A2D1176B448132A271057DCC, doi: 10.1017/S0962492911000055.

[31] Melike Sirlanci, Susan Luczak, and I Gary Rosen, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, In American Control Conference (ACC), 2017, pages 3171-3176. IEEE, 2017, url: https://www.researchgate.net/publication/318333926 Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, doi: 10.23919/ACC.2017.7963435.

[32] Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dayheon Kang, Ruoxi Pan, Xin Yu, and I Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, Automatica, 2018, to appear, arXiv:1808.04058, url: https://arxiv.org/abs/1808.04058.

[33] Melike Sirlanci, I Gary Rosen, Susan E. Luczak, Catharine E. Fairbairn, Konrad Bresin, and Dayheon Kang, Deconvolving the input to random abstract parabolic systems; a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, Inverse problems, 34(12), 2018, arXiv:1807.05088v1, url: http://iopscience.iop.org/article/10.1088/1361-6420/aae791/pdf.

[34] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica, pages 451-559, 2010, url: https://www.cambridge.org/core/journals/acta-numerica/article/inverse-pr..., doi: 10.1017/S0962492910000061.

[35] Robert M. Swift, Transdermal measurement of alcohol consumption, Addiction, 88(8):1037-1039, 1993, doi: 10.1111/j.1360-0443.1993.tb02122.x.

[36] Robert M. Swift, Transdermal alcohol measurement for estimation of blood alcohol concentration, Alcoholism: Clinical and Experimental Research, 24(4):422-423, 2000, doi: 10.1111/j.1530-0277.2000.tb02006.x.

[37] Robert M. Swift, Direct measurement of alcohol and its metabolites, Addiction, 98:73-80, 2003, doi: 10.1046/j.1359-6357.2003.00605.x.

[38] Robert M. Swift, Christopher S Martin, Larry Swette, Anthony LaConti, and Nancy Kackley, Studies on a wearable, electronic, transdermal alcohol sensor, Alcoholism: Clinical and Experimental Research, 16(4):721-725, 1992, url: https://www.ncbi.nlm.nih.gov/pubmed/1530135, doi: 10.1111/j.1530-0277.1992.tb00668.x.

[39] H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics. Pitman, 1979, url: https://books.google.com/books?id=Dn6zAAAAIAAJ.

 

 

Editorial Remark. The originally published version of the article has been revised on 2019-01-22: Reason (author's request): Not correct or not full author's address. The original published version is available from here.