GREATEST STRONGLY CONNECTED SUBSPACES OF A NETWORK IN PRETOPOLOGY

TitleGREATEST STRONGLY CONNECTED SUBSPACES OF A NETWORK IN PRETOPOLOGY
Publication TypeJournal Article
Year of Publication2019
AuthorsDALUD-VINCENT, MONIQUE
Volume23
Issue2
Start Page149
Pagination18
Date Published12/2018
ISSN1083-2564
AMS54A05, 54B05, 54B15
Abstract

In this paper, we present properties of greatest strongly connected subspaces in the case of a network (which is defined as a family of pretopologies). The network can be analyse by the union or by the intersection or by the composition of the different pretopologies.

URLhttps://acadsol.eu/en/articles/23/2/2.pdf
DOI10.12732/caa.v23i2.2
Refereed DesignationRefereed
Full Text

[1] Z. Belmandt, Manuel de Pretopologie et Ses Applications, Hermes, France, 1993.
[2] M. Dalud-Vincent, Modele Pretopologique pour Une Methodologie d’Analyse de Reseaux. Concepts et Algorithmes, Ph.D. Thesis, Lyon 1 University, France, 1994.
[3] M. Dalud-Vincent, Strongly connected components of a networks in Pretopology, International Journal of Pure and Applied Mathematics, 120, No. 1 (2018).
[4] M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology as an extension of graph theory : the case of strong connectivity, International Journal of Applied Mathematics, 5, No. 4 (2001),  455-472.
[5] M. Dalud-Vincent, M. Brissaud, M. Lamure, Closed sets and closures in pretopology, International Journal of Pure and Applied Mathematics, 50, No. 3 (2009), 391-402.
[6] M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology, Matroıdes and Hypergraphs, International Journal of Pure and Applied Mathematics, 67, No. 4 (2011), 363-375.
[7] M. Dalud-Vincent, M. Brissaud, M. Lamure, Connectivities and Partitions in a Pretopological Space, International Mathematical Forum, 6, No. 45 (2011), 2201-2215.
[8] M. Dalud-Vincent, M. Lamure, Connectivities for a Pretopology and its inverse, International Journal of Pure and Applied Mathematics, 86, No. 1 (2013), 43-54, doi: 10.12732/ijpam.v86i1.5.
[9] M. Dalud-Vincent, M. Lamure, Connectivities in the case of an idempotent Pretopology, International Journal of Pure and Applied Mathematics, 106, No. 3 (2016), 923-936, doi: 10.12732/ijpam.v106i3.17.
[10] M. Dalud-Vincent, M. Lamure, Connectivities for a symmetric Pretopology, International Journal of Pure and Applied Mathematics, 111, No. 1 (2016), 77-90, doi: 10.12732/ijpam.v111i1.8.