[1] H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and G. Guidoboni, Sensitivity analysis in poro-elastic and poro-visco-elastic models with respect to boundary data, Quart. Apply. Math. 75 (2017), 697-735.
[2] H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and G. Guidoboni, Local sensitivity via the complex-step derivative approximation for 1-D poro-elastic and poro-visco-elastic models, Mathematical Control and Related Fields, submitted 2017.
[3] H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and K. Tillman, The complex-step method for sensitivity analysis of non-smooth problems arising in biology, Eurasian Journal of Mathematical and Computer Applications 3 (2015), 15-68.
[4] H.T. Banks, K. Bekele-Maxwell, L. Bociu, C. Wang, Sensitivity via the complex-step method for delay differential equations with non-smooth initial data, CRSC-TR16-09, Center for Research in Scientific Computation, N. C. State University, Raleigh, NC, July, 2016, Quarterly of Applied Mathematics November 2, 2016. http://dx.doi.org/10.1090/qam/1458.
[5] L. Bociu, G. Guidoboni, R. Sacco and J. Webster, Analysis of nonlinear poro-elastic and poro-visco-elastic models, Arch. Ration. Mech. Anal. 222 (2016), 1445–1519. https://doi.org/10.1007/s00205-016-1024-9
[6] M.R. DiSilvestro and J.-K. F. Suh, Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration, Annals of Biomedical Engineering 30 (2002), 792–800. https://doi.org/10.1114/1.1496088
[7] J. N. Lyness, Numerical algorithms based on the theory of complex vari- ables, Proc. ACM 22nd Nat. Conf., 4 (1967), 124 - 134.
[8] J. N. Lyness and C. B. Moler, Numerical differation of analytic functions, SIAM J. Numer. Anal., 4 (1967), 202 - 210.
[9] A.F. Mak, The apparent viscoelastic behavior of articular carilage - the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows, J. Biomech. Eng. 108 (1986), 123-130. https://doi.org/10.1115/1.3138591
[10] Joaquim R. R. A. Martins, Ilan M. Kroo, and Juan J. Alonso. An automated method for sensitivity analysis using complex variables, AIAA Paper 2000-0689 (Jan.), 2000.
[11] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The complex-step derivative approximation, Journal ACM Transactions on Mathematical Software (TOMS), 2003.
[12] L.A. Setton, W. Zhu and V.C. Mow, The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior, J. Biomech. 26 (1993), 581-592. https://doi.org/10.1016/0021-9290(93)90019-B
[13] M.A. Soltz and G.A. Ateshian, Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression, J. Biomech. 31 (1998), 927-934. https://doi.org/10.1016/S0021-9290(98)00105-5
[14] J.-K. Suh and S. Bai, Finite element formulation of biphasic poroviscoelastic model for articular cartilage, J. Biomech. Eng. 120 (1998), 195-201. https://doi.org/10.1115/1.2798302
[15] M. Verri, G. Guidoboni, L. Bociu and R. Sacco, The role of structural viscoelasticity in deformable porous media with incompressible constituents: applications in biomechanics, Math. Biosci. Eng. 15 (2018), 933-959. https://doi.org/10.3934/mbe.2018042