Publication TypeJournal Article
Year of Publication2019
Start Page61
Date Published12/2018
AMS35B44, 35Q74

The main goal of this work is to numerically investigate the sensitivity of biomechanical responses of deformable, porous media to applied external loads. Fluid flows through deformable porous media are relevant for many applications in biology, medicine and bioengineering, like perfusion of tissues in the human body, or fluid flows inside cartilages, bones, and engineered tissue scaffolds. Sensitivity analysis provides valuable insights about how robust the system is with respect to changes in parameters and data and reveals which ones are the most influential for the solutions, and could potentially be used as control agents.

Refereed DesignationRefereed
Full Text

[1] H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and G. Guidoboni, Sensitivity analysis in poro-elastic and poro-visco-elastic models with respect to boundary data, Quart. Apply. Math. 75 (2017), 697-735.
[2] H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and G. Guidoboni, Local sensitivity via the complex-step derivative approximation for 1-D poro-elastic and poro-visco-elastic  models, Mathematical Control and Related Fields, submitted 2017.
[3] H.T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman and K. Tillman, The complex-step method for sensitivity analysis of non-smooth problems arising in biology, Eurasian Journal of Mathematical and Computer Applications 3 (2015), 15-68.
[4] H.T. Banks, K. Bekele-Maxwell, L. Bociu, C. Wang, Sensitivity via the complex-step method for delay differential equations with non-smooth initial data, CRSC-TR16-09, Center for Research in Scientific Computation, N. C. State University, Raleigh, NC, July, 2016, Quarterly of Applied Mathematics November 2, 2016. http://dx.doi.org/10.1090/qam/1458.
[5] L. Bociu, G. Guidoboni, R. Sacco and J. Webster, Analysis of nonlinear poro-elastic and poro-visco-elastic models, Arch. Ration. Mech. Anal. 222 (2016), 1445–1519. https://doi.org/10.1007/s00205-016-1024-9
[6] M.R. DiSilvestro and J.-K. F. Suh, Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration, Annals of Biomedical Engineering 30 (2002), 792–800. https://doi.org/10.1114/1.1496088
[7] J. N. Lyness, Numerical algorithms based on the theory of complex vari- ables, Proc. ACM 22nd Nat. Conf., 4 (1967), 124 - 134.
[8] J. N. Lyness and C. B. Moler, Numerical differation of analytic functions, SIAM J. Numer. Anal., 4 (1967), 202 - 210.
[9] A.F. Mak, The apparent viscoelastic behavior of articular carilage - the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows, J. Biomech. Eng. 108 (1986), 123-130. https://doi.org/10.1115/1.3138591
[10] Joaquim R. R. A. Martins, Ilan M. Kroo, and Juan J. Alonso. An automated method for sensitivity analysis using complex variables, AIAA Paper 2000-0689 (Jan.), 2000.
[11] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The complex-step derivative approximation, Journal ACM Transactions on Mathematical Software (TOMS), 2003.
[12] L.A. Setton, W. Zhu and V.C. Mow, The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior, J. Biomech. 26 (1993),  581-592. https://doi.org/10.1016/0021-9290(93)90019-B
[13] M.A. Soltz and G.A. Ateshian, Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression, J. Biomech. 31 (1998), 927-934. https://doi.org/10.1016/S0021-9290(98)00105-5
[14] J.-K. Suh and S. Bai, Finite element formulation of biphasic poroviscoelastic model for articular cartilage, J. Biomech. Eng. 120 (1998), 195-201. https://doi.org/10.1115/1.2798302
[15] M. Verri, G. Guidoboni, L. Bociu and R. Sacco, The role of structural viscoelasticity in deformable porous media with incompressible constituents: applications in biomechanics, Math. Biosci. Eng. 15 (2018), 933-959. https://doi.org/10.3934/mbe.2018042