PREY-PREDATOR TRIDIAGONAL 4-DIMENSIONAL MODELS

TitlePREY-PREDATOR TRIDIAGONAL 4-DIMENSIONAL MODELS
Publication TypeJournal Article
Year of Publication2019
AuthorsANTONOV, ANDREY, NENOV, SVETOSLAV, TSVETKOV, TSVETELIN
Volume23
Issue1
Start Page51
Pagination10
Date Published11/2018
ISSN1083-2564
AMS34C05, 34C07, 34C40
Abstract

The prey-predator Lotka-Volterra models are some of the most popular mathematical models in biology and chemistry and they are in fact the first abstract models to analyze cooperativity, oscillatory behavior, and spaces synchronization at large scale of biochemistry, biomolecular, and medical interactions models.

In the article we will consider 4-dimensional tridiagonal Lotka-Volterra models. We determine some criteria for existence of first integrals of the systems.

We also discuss some differences of some properties of tridiagonal Lotka-Volterra models based on the parity of dimensions.

URLhttps://acadsol.eu/en/articles/23/1/4.pdf
DOI10.12732/caa.v23i1.4
Refereed DesignationRefereed
Full Text

[1] Andrey Antonov, Svetoslav Nenov, Tzvetelin Tzvetkov, Prey-predator tridiagonal Lotka-Volterra models, International Journal of Differential Equations and Applications, 17, No. 1 (2018), 45-59, doi: 10.12732/ijdea.v17i1.5727.
[2] Metapopulation Dynamics: Empirical and Theoretical Investigations, Ed. Michael Gilpin, Academic Press, 2012.
[3] B. Grammaticos, J. Moulin-Ollagnier, A. Ramani, J.-M. Strelcyn and S. Wojciechowski, Integrals of quadratic ordinary differential equations in R3: The Lotka-Volterra system, Physica A: Statistical Mechanics and its Applications, 163, No. 2 (1990), 683-722, doi: 10.1016/0378-4371(90)90152-I.
[4] Michael Patrick Hassell, The Dynamics of Arthropod Predator-Prey Systems, Princeton University Press, 1978.
[5] A.J. Lotka, Elements of Mathematical Biology, (formerly published under the title Elements of Physical Biology), New York, Dover, 1958.
[6] Janusz Miercyz´niski, Strictly cooperative systems with a first integral, SIAM Journal on Mathematical Analysis, 18, No. 3 (1987), doi: 10.1137/0518049.
[7] A. Tsoularis, Analysis of logistic growth models, Res. Lett. Inf. Math. Sci., 2 (2001), 23-46.
[8] V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie d’animali conviventi, Mem. Acad. Lincei, 2 (1926), 31-113.