ON VOLTERRA-INTEGRO DYNAMICAL SYSTEMS ON TIME SCALES

TitleON VOLTERRA-INTEGRO DYNAMICAL SYSTEMS ON TIME SCALES
Publication TypeJournal Article
Year of Publication2019
AuthorsAKIN, ELVAN, OZTURK, OZKAN
Volume23
Issue1
Start Page21
Pagination10
Date Published11/2018
ISSN1083-2564
AMS34N05, 39A13, 39A60
Abstract

In this paper, we classify nonoscillatory solutions of a two dimensional nonlinear Volterra-integro time scale system and also provide sufficient conditions for the existence of such solutions via the Knaster fixed point theorem.

URLhttps://acadsol.eu/en/articles/23/1/2.pdf
DOI10.12732/caa.v23i1.2
Refereed DesignationRefereed
Full Text

[1] W. Jiang, T. Tian, Numerical solution of nonlinear Volterra integrodifferential equations of fractional order by the reproducing kernel method, Appl. Math. Model. 39 (16) (2015) 4871-4876, doi: 10.1016/j.apm.2015.03.053.
[2] V. Lakshmikantham, Theory of Integro-Differential Equations, 1st Edition, Vol. 1 of Stability and Control, CRC Press, 1995.
[3] L. Li, M. Han, X. Xue, Y. Liu,     -stability of nonlinear Volterra integrodifferential systems with time delay, Abstr. Appl. Anal. (2013) Art. ID 150684, 5.
[4] J. Ma, Blow-up solutions of nonlinear Volterra integro-differential equations, Math. Comput. Modelling 54 (11-12) (2011) 2551-2559, doi: 10.1016/j.mcm.2011.06.020.
[5] G. Y. Mehdiyeva, M. N. Imanova, V. R. Ibrahimov, On the application of hybrid methods to solving Volterraintegro-differential equation, Int. J. Math. Comput. 22 (1) (2014) 115-125.
[6] F. Meng, L. Li, Y. Bai,     -stability of nonlinear Volterra integrodifferential systems, Dynam. Systems Appl. 20 (4) (2011) 563-574. 
[7] L. Saeedi, A. Tari, S. H. Momeni Masuleh, Numerical solution of a class of the nonlinear Volterra integro-differential equations, J. Appl. Math. Inform. 31 (1-2) (2013) 65-77, doi: 10.14317/jami.2013.065.
[8] A.-M. Wazwaz, Linear and nonlinear integral equations, Higher Education Press, Beijing, Springer, Heidelberg, 2011, methods and applications, doi: 10.1007/978-3-642-21449-3.
[9] M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhauser Boston, Inc., Boston, MA, 2001, an introduction with applications, doi: 10.1007/978-1-4612-0201-1.
[10] M. Bohner, A. Peterson (Eds.), Advances in dynamic equations on time scales, Birkhauser Boston, Inc., Boston, MA, 2003, doi: 10.1007/978-0-8176-8230-9.
[11] M. Adivar, H. C. Koyuncuo˘glu, Y. N. Raffoul, Classification of positive solutions of nonlinear systems of Volterra integro-dynamic equations on time scales, Commun. Appl. Anal. 16 (3) (2012) 359-375.
[12] E. Akın-Bohner, M. Bohner, F. Akın, Pachpatte inequalities on time scales, JIPAM. J. Inequal. Pure Appl. Math. 6 (1) (2005) Article 6, 23.
[13] B. Knaster., Un theoreme sur les fonctions d’ensembles., Ann. Soc. Polon. Math. 6 (1928) 133-134.