[1] Z. Ahmad, The Zubair-G Family of Distributions: Properties and Applications, Annals of Data Science, (2018), doi: 10.1007/s40745-018-0169-9.
[2] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. and Prob. Letters, 49 (2000), 155-161.
[3] M. Xie, Y. Tang, T. Goh, A modified Weibull extension with bathtubZUBAIR-G FAMILY OF CUMULATIVE LIFETIME DISTRIBUTIONS 15 shaped failure rate function, Reliability Eng. and System Safety, 76 (2002), 279-285.
[4] M. Khan, A. Sharma, Generalized order statistics from Chen distribution and its characterization, J. of Stat. Appl. and Prob., 5 (2016), 123-128.
[5] S. Dey, D. Kumar, P. Ramos, F. Louzada, Exponentiated Chen distribution: Properties and Estimations, Comm. in Stat.-Simulation and Computation, 46, No. 10 (2017), 8118-8139.
[6] Y. Chaubey, R. Zhang, An extension of Chen’s family of survival distributions with bathtub shape or increasing hazard rate function, Comm. in Stat.-Theory and Methods, 44 (2015), 4049-4069.
[7] D. Kumar, M. Kumar, A new generalization of the extended exponential distribution with application, Ann. Data Sci. (2018), 22 pp.
[8] M. Khan, Transmuted generalized power Weibull distribution, Thailand Statistician, 16, No. 2 (2018), 156-172.
[9] G. Cordeiro, A. Afify, E. Ortega, A. Suzuki, M. Mead, The odd Lomax generator of distributions, J. Comp. Appl. Math., 377 (2019), 222-237.
[10] V. Cancho, F. Louzada, G. Barriga, The Poisson-exponential lifetime distribution, Comp. Stat. Data Anal., 55 (2011), 677-686.
[11] G. Rodrigues, F. Louzada, P. Ramos, Poisson-exponential distribution: different methods of estimation, J. of Appl. Stat., 45, No. 1 (2018), 128144.
[12] F. Louzada, P. Ramos, P. Ferreira, Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence, Communication in Statistics-Simulation and Computation, (2018), doi: 10.1080/03610918.2018.1491988.
[13] P. Ramos, D. Dey, F. Louzada, V. Lachos, An extended Poisson family of lifetime distribution: A unified approach in competitive and Complementary risk, arXiv: submit/2267507
[stat.AP], (2018). 16 N. KYURKCHIEV, A. ILIEV, AND A. RAHNEV
[14] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54, No. 1 (2016), 109-119.
[15] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-76045-7.
[16] N. Kyurkchiev, A. Iliev, S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing (2017), ISBN: 978-3-33033143-3.
[17] R. Anguelov, M. Borisov, A. Iliev, N. Kyurkchiev, S. Markov, On the chemical meaning of some growth models possessing Gompertzian-type property, Math. Meth. Appl. Sci., (2017), 1-12, doi: 10.1002/mma.4539.
[18] R. Anguelov, N. Kyurkchiev, S. Markov, Some properties of the Blumberg’s hyper-log-logistic curve, BIOMATH, 7, No. 1 (2018), 8 pp.
[19] A. Iliev, N. Kyurkchiev, S. Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 133 (2017), 223-234.
[20] A. Iliev, N. Kyurkchiev, S. Markov, Approximation of the cut function by Stannard and Richards sigmoid functions, IJPAM, 109, No. 1 (2016), 119-128.
[21] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the Loglogistic and transmuted Log-logistic models. Some applications, Dynamic Systems and Applications, 27, No. 3 (2018), 593-607.
[22] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the cut functions by hyper-log-logistic function, Neural, Parallel and Scientific Computations, 26, No. 2 (2018), 169-182.
[23] N. Kyurkchiev, A. Iliev, S. Markov, Families of recurrence generated three and four parametric activation functions, Int. J. Sci. Res. and Development, 4, No. 12 (2017), 746-750. ZUBAIR-G FAMILY OF CUMULATIVE LIFETIME DISTRIBUTIONS 17
[24] N. Kyurkchiev, A note on the new geometric representation for the parameters in the fibril elongation process, C. R. Acad. Bulg. Sci., 69, No. 8 (2016), 963-972.
[25] N. Kyurkchiev, On the numerical solution of the general ”ligand-gated neuroreceptors model’ via CAS Mathematica, Pliska Stud. Math. Bulgar., 26 (2016), 133-142.
[26] N. Kyurkchiev, S. Markov, On the numerical solution of the general kinetic ”K-angle” reaction system, Journal of Mathematical Chemistry, 54, No. 3 (2016), 792-805.
[27] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the generalized cut functions of degree p+1 by smooth hyper-log-logistic function, Dynamic Systems and Applications, 27, No. 4 (2018), 715-728.
[28] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note On the Threestage Growth Model, Dynamic Systems and Applications, 28, No. 1 (2019), 63-72.
[29] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note On the n-stage Growth Model. Overview, Biomath Communications, 5, No. 2 (2018). (accepted)
[30] O. Rahneva, H. Kiskinov, I. Dimitrov, V. Matanski, Application of a Weibull Cumulative Distribution Function Based on m Existing Ones to Population Dynamics, International Electronic Journal of Pure and Applied Mathematics, 12, No. 1 (2018), 111-121.
[31] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[32] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-87794-2.
[33] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On the extended Chen’s and Pham’s software reliability models. Some applications, Int. J. of Pure and Appl. Math., 118, No. 4 (2018), 1053-1067. 18 N. KYURKCHIEV, A. ILIEV, AND A. RAHNEV
[34] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, A new class of Gompertz-type software reliability models, International Electronic Journal of Pure and Applied Mathematics, 12, No. 1 (2018), 43-57.
[35] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth curves for software error detection: Approximation and modeling aspects, International Journal of Pure and Applied Mathematics, 118, No. 3 (2018), 599-611.
[36] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the Yamadaexponential software reliability model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 871-882.
[37] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on The ”Mean Value” Software Reliability Model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 949-956.
[38] D. R. Jeske, X. Zhang, Some successful approaches to software reliability modeling in industry, J. Syst. Softw., 74 (2005), 85-99.
[39] K. Song, H. Pham, A Software Reliability Model with a Weibull Fault Detection Rate Function Subject to Operating Environments, Appl. Sci., 7 (2017), 16 pp., doi: 10.3390/app7100983.
[40] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the generalized inverted exponential software reliability model, International Journal of Advanced Research in Computer and Communication Engineering, 7, No. 3 (2018), 484-487.
[41] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Transmuted inverse exponential software reliability model, Int. J. of Latest Research in Engineering and Technology, 4, No. 5 (2018), 1-6.
[42] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Analysis of the Chen’s and Pham’s Software Reliability Models, Cybernetics and Information Technologies, 18, No. 3 (2018), 37-47.
[43] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On Some Nonstandard Software Reliability Models, Dynamic Systems and Applications, 27, No. 4 (2018), 757-771. ZUBAIR-G FAMILY OF CUMULATIVE LIFETIME DISTRIBUTIONS 19
[44] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some deterministic growth curves with applications to software reliability analysis, Int. J. of Pure and Appl. Math., 119, No. 2 (2018), 357-368.
[45] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Investigations of the Kstage Erlangian software reliability growth model, Int. J. of Pure and Appl. Math., 119, No. 3 (2018), 441-449.
[46] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some Transmuted Software Reliability Models, Journal of Mathematical Sciences and Modelling, 1, No. 2 (2018). (to appear)
[47] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on Ohbas Inflexion S-shaped Software Reliability Growth Model, Collection of scientific works from conference Mathematics. Informatics. Information Technologies. Application in Education, Pamporovo, Bulgaria, October 10-12, (2018). (to appear)
[48] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, On the Burr XII-Weibull Software Reliability Model, Int. J. of Pure and Appl. Math., 119, No. 4 (2018), 639-650.
[49] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., 120 No. 1 (2018), 127-136.
[50] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.
[51] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962
[1957]) (Republished by AMS-Chelsea 2005), ISBN: 978-0-821-83835-8.
[52] R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: SCAN 2014 Proceedings, LNCS, ed. by J.W.von Gudenberg, Springer, Berlin (2015).
[53] R. Anguelov, S. Markov, B. Sendov, On the Normed Linear Space of Hausdorff Continuous Functions. In: Lirkov, I., et al. (Eds.): Lecture Notes in Computer Science 3743, Springer (2006), 281-288. 20 N. KYURKCHIEV, A. ILIEV, AND A. RAHNEV
[54] R. Anguelov, S. Markov, B. Sendov, Algebraic Operations on the Space of Hausdorff Continuous Functions. In: Bojanov, B. (Ed.): Constructive Theory of Functions, Prof. M. Drinov Academic Publ. House, Sofia (2006), 35-44.
[55] R. Anguelov, S. Markov, B. Sendov, The Set of Hausdorff Continuous Functions - the Largest Linear Space of Interval Functions, Reliable Computing, 12 (2006), 337-363.
[56] L. Rogers-Bennett, D. W. Rogers, S. A. Schultz, Modeling growth and mortality of red abalone Haliotis Rufescens in Northern California, J. of Shellfish Research, 26, No. 3 (2007), 719-727.
[57] H. Pham, System Software Reliability, In: Springer Series in Reliability Engineering, Springer-Verlag London Limited (2006).
[58] M. Ohba, Software reliability analysis models, IBM J. Research and Development, 21, No. 4 (1984).