APPLICATION OF A NEW CLASS CUMULATIVE LIFETIME DISTRIBUTION TO SOFTWARE RELIABILITY ANALYSIS

TitleAPPLICATION OF A NEW CLASS CUMULATIVE LIFETIME DISTRIBUTION TO SOFTWARE RELIABILITY ANALYSIS
Publication TypeJournal Article
Year of Publication2018
AuthorsPAVLOV, NIKOLAY, ILIEV, ANTON, RAHNEV, ASEN, KYURKCHIEV, NIKOLAY
Secondary TitleCommunications in Applied Analysis
Volume22
Issue4
Start Page555
Pagination12
Date Published09/2018
ISSN1083-2564
AMS41A46, 68N30
Abstract

In this paper we consider the application of a a new class of cumulative distribution function proposed by Ramos, Dey, Louzada and Lachos in [9] to the debugging theory. 

We study the Hausdorff approximation of the shifted Heaviside step function by this family.

Numerical examples, illustrating our results are presented using programming environment Mathematica.

We give also real examples with data provided in [30] using the new software reliability model. Dataset included [31] Year 2000 compatibility modifications, operating system upgrade, and signaling message processing.

URLhttps://acadsol.eu/en/articles/22/4/4.pdf
DOI10.12732/caa.v22i4.4
Refereed DesignationRefereed
Full Text

REFERENCES

[1] Z. Chen, A new two–parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. and Prob. Letters, 49 (2000), 155–161.
[2] M. Xie, Y. Tang, T. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliability Eng. and System Safety, 76 (2002), 279–285.
[3] M. Khan, A. Sharma, Generalized order statistics from Chen distribution and its characterization, J. of Stat. Appl. and Prob., 5 (2016), 123–128.
[4] S. Dey, D. Kumar, P. Ramos, F. Louzada, Exponentiated Chen distribution: Properties and Estimations, Comm. in Stat.–Simulation and Computation, (2017), 1–22.
[5] Y. Chaubey, R. Zhang, An extension of Chen’s family of survival distributions with bathtub shape or increasing hazard rate function, Comm. in Stat.–Theory and Methods, 44 (2015), 4049–4069.
[6] V. Cancho, F. Louzada, G. Barriga, The Poisson–exsponential lifetime distribution, Comp. Stat. Data Anal., 55 (2011), 677–686.
[7] G. Rodrigues, F. Louzada, P. Ramos, Poisson–exponential distribution: different methods of estimation, J. of Appl. Stat., 45, No. 1 (2018), 128–144.
[8] F. Louzada, P. Ramos, P. Ferreira, Exponential–Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence, Communication in Statistics–Simulation and Computation, (2018).
[9] P. Ramos, D. Dey, F. Louzada, V. Lachos, An extended Poisson family of lifetime distribution: A unified approach in competitive and Complementary risk, arXiv: submit/2267507 [stat.AP] 19 May 2018.
[10] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[11] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-87794-2.
[12] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On the extended Chen’s and Pham’s software reliability models. Some applications, Int. J. of Pure and Appl. Math., 118, No. 4 (2018), 1053–1067.
[13] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, A new class of Gompertz–type software reliability models, International Electronic Journal of Pure and Applied Mathematics, 12, No. 1 (2018), 43–57.
[14] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth curves for software error detection: Approximation and modeling aspects, International Journal of Pure and Applied Mathemat
ics, 118, No. 3 (2018), 599–611.
[15] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the Yamada–exponential software reliability model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 871–882.
[16] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on The ”Mean Value” Software Reliability Model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 949–956.
[17] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the generalized inverted exponential software reliability model, International Journal of Advanced Research in Computer and Communication Engineering, 7, No. 3 (2018), 484–487.
[18] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Transmuted inverse exponential software reliability model, Int. J. of Latest Research in Engineering and Technology, 4, No. 5 (2018), 1–6.
[19] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Analysis of the Chen’s and Pham’s Software Reliability Models, Cybernetics and Information Technologies, 18, No. 3 (2018), 37–47.
[20] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On Some Nonstandard Software Reliability Models, Dynamic Systems and Applications, 27, No. 4 (2018), 757–771.
[21] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some deterministic growth curves with applications to software reliability analysis, Int. J. of Pure and Appl. Math., 119, No. 2 (2018), 357–368.
[22] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Investigations of the K-stage Erlangian software reliability growth model, Int. J. of Pure and Appl. Math., 119, No. 3 (2018), 441–449.
[23] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some Transmuted Software Reliability Models, Journal of Mathematical Sciences and Modelling, 1, No. 2 (2018). (to appear)
[24] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on Ohbas Inflexion S–shaped Software Reliability Growth Model, Collection of scientific works from conference Mathematics. Informatics. Information Technologies. Application in Education, Pamporovo, Bulgaria, October 10-12, 2018. (to appear)
[25] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, On the Burr XII-Weibull Software Reliability Model, Int. J. of Pure and Appl. Math., 119, No. 4 (2018), 639–650.
[26] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., 120, No. 1 (2018), 127–136.
[27] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, A note on the Loglogistic and transmuted Log–logistic Models. Some applications, Dynamic Systems and Applications, 27, No. 3 (2018), 593–607.
[28] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.
[29] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978-0-821-83835-8.
[30] D. R. Jeske, X. Zhang, Some successful approaches to software reliability modeling in industry, J. Syst. Softw., 74 (2005), 85–99.
[31] K. Song, H. Pham, A Software Reliability Model with a Weibull Fault Detection Rate Function Subject to Operating Environments, Appl. Sci., 7 (2017), 16 pp., doi:10.3390/app7100983