REFERENCES
[1] Z. Chen, A new two–parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. and Prob. Letters, 49 (2000), 155–161.
[2] M. Xie, Y. Tang, T. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliability Eng. and System Safety, 76 (2002), 279–285.
[3] M. Khan, A. Sharma, Generalized order statistics from Chen distribution and its characterization, J. of Stat. Appl. and Prob., 5 (2016), 123–128.
[4] S. Dey, D. Kumar, P. Ramos, F. Louzada, Exponentiated Chen distribution: Properties and Estimations, Comm. in Stat.–Simulation and Computation, (2017), 1–22.
[5] Y. Chaubey, R. Zhang, An extension of Chen’s family of survival distributions with bathtub shape or increasing hazard rate function, Comm. in Stat.–Theory and Methods, 44 (2015), 4049–4069.
[6] V. Cancho, F. Louzada, G. Barriga, The Poisson–exsponential lifetime distribution, Comp. Stat. Data Anal., 55 (2011), 677–686.
[7] G. Rodrigues, F. Louzada, P. Ramos, Poisson–exponential distribution: different methods of estimation, J. of Appl. Stat., 45, No. 1 (2018), 128–144.
[8] F. Louzada, P. Ramos, P. Ferreira, Exponential–Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence, Communication in Statistics–Simulation and Computation, (2018).
[9] P. Ramos, D. Dey, F. Louzada, V. Lachos, An extended Poisson family of lifetime distribution: A unified approach in competitive and Complementary risk, arXiv: submit/2267507 [stat.AP] 19 May 2018.
[10] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-82805-0.
[11] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-87794-2.
[12] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On the extended Chen’s and Pham’s software reliability models. Some applications, Int. J. of Pure and Appl. Math., 118, No. 4 (2018), 1053–1067.
[13] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, A new class of Gompertz–type software reliability models, International Electronic Journal of Pure and Applied Mathematics, 12, No. 1 (2018), 43–57.
[14] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth curves for software error detection: Approximation and modeling aspects, International Journal of Pure and Applied Mathemat
ics, 118, No. 3 (2018), 599–611.
[15] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the Yamada–exponential software reliability model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 871–882.
[16] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on The ”Mean Value” Software Reliability Model, International Journal of Pure and Applied Mathematics, 118, No. 4 (2018), 949–956.
[17] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the generalized inverted exponential software reliability model, International Journal of Advanced Research in Computer and Communication Engineering, 7, No. 3 (2018), 484–487.
[18] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Transmuted inverse exponential software reliability model, Int. J. of Latest Research in Engineering and Technology, 4, No. 5 (2018), 1–6.
[19] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Analysis of the Chen’s and Pham’s Software Reliability Models, Cybernetics and Information Technologies, 18, No. 3 (2018), 37–47.
[20] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, On Some Nonstandard Software Reliability Models, Dynamic Systems and Applications, 27, No. 4 (2018), 757–771.
[21] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some deterministic growth curves with applications to software reliability analysis, Int. J. of Pure and Appl. Math., 119, No. 2 (2018), 357–368.
[22] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Investigations of the K-stage Erlangian software reliability growth model, Int. J. of Pure and Appl. Math., 119, No. 3 (2018), 441–449.
[23] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some Transmuted Software Reliability Models, Journal of Mathematical Sciences and Modelling, 1, No. 2 (2018). (to appear)
[24] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on Ohbas Inflexion S–shaped Software Reliability Growth Model, Collection of scientific works from conference Mathematics. Informatics. Information Technologies. Application in Education, Pamporovo, Bulgaria, October 10-12, 2018. (to appear)
[25] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, On the Burr XII-Weibull Software Reliability Model, Int. J. of Pure and Appl. Math., 119, No. 4 (2018), 639–650.
[26] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., 120, No. 1 (2018), 127–136.
[27] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, A note on the Loglogistic and transmuted Log–logistic Models. Some applications, Dynamic Systems and Applications, 27, No. 3 (2018), 593–607.
[28] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.
[29] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978-0-821-83835-8.
[30] D. R. Jeske, X. Zhang, Some successful approaches to software reliability modeling in industry, J. Syst. Softw., 74 (2005), 85–99.
[31] K. Song, H. Pham, A Software Reliability Model with a Weibull Fault Detection Rate Function Subject to Operating Environments, Appl. Sci., 7 (2017), 16 pp., doi:10.3390/app7100983