ELASTICITY WITH MIXED FINITE ELEMENT

TitleELASTICITY WITH MIXED FINITE ELEMENT
Publication TypeJournal Article
Year of Publication2018
AuthorsKOUBAITI, OUADIE, EL-MEKKAOUI, JAOUAD, ELKHALFI, AHMED
Secondary TitleCommunications in Applied Analysis
Volume22
Issue4
Start Page493
Pagination18
Date Published09/2018
ISSN1083-2564
AMS74S05, 78M10, 80M10
Abstract

In this article we are intending to solve the Navier-Lame problem in 2D with Dirichlet and Neumann boundaries, using the mixed finite element P1 -bubble P1. We want to introduce a new weak formulation of this problem with help of another new unknown which is equal to divergence of the displacement. We do the necessary calculations of this problem in order to come up with a Matlab program that visualizes the numerical solution.Some numerical results which are shown, prove that our method is more efficient than the ordinary finite element.

URLhttps://acadsol.eu/en/articles/22/4/1.pdf
DOI10.12732/caa.v22i4.1
Refereed DesignationRefereed
Full Text

REFERENCES

[1] J. Alberty, C. Carstensen, S.A. Funken, R. Klose, Matlab implementation of the finite element method in elasticity, Computing, 69 (2002), 239-263, doi: 10.1007/s00607-002-1459-8.
[2] Jonas Koko, Vectorized Matlab codes for the Stokes problem with P1-bubble/P1 finite element, Universite Blaise Pascal -CNRS UMR 6158 ISIMA, Campus des Cezeaux - BP 10125, 63173, France.
[3] P. Ciarlet, J.R. Jianguo Huang, Jun Zou, Some observation ongeneralized saddle-point problem.
[4] D.N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the stokes equations, Calcolo, 21 (1984), 337-344.
[5] K.J. Bathe, Finite Element Procedures, Second Edition, K.J. Bathe, Watertown, MA, 2014.
[6] V. Girault, P.A. Raviart, Finite Element Approximation of the NavierStokes Equations, Springer-Verlag, Berlin Heiderlberg New York, 1981.
[7] Alexandre Ern, Aide-Memoire Elements Finis, Dunod, Paris, 2005.
[8] F. Brezzi and M. Fortin, Mixed and Hybrid Element Methods, SpringerVerlag, New York, 1991.
[9] R.B. Kellogg and B. Liu, A finite element method for compressible Stokes equations, SIAM J. Numer. Anal., 33 (1996), 780-788.
[10] D. Yang, Iterative schemes for mixed finite element methods with applications to elasticity and compressible flow problems, Numer. Math., 93 (2002), 177-200.
[11] P. Wriggers, et al. Benchmark perforated tension strip. Communication in talk at Enumath Conference in Heidelberg, 1997 (see also http://www.ibnm.unihannover.de/Forschung/Paketantrag/Benchmarks/benchmark.html)