THE PROHOROV METRIC FRAMEWORK AND AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs

TitleTHE PROHOROV METRIC FRAMEWORK AND AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs
Publication TypeJournal Article
Year of Publication2018
AuthorsBANKS, HT, FLORES, KB, ROSEN, IG, RUTTER, EM, SIRLANCI, MELIKE, W. THOMPSON, CLAYTON
Secondary TitleCommunications in Applied Analysis
Volume22
Issue3
Start Page415
Pagination32
Date Published06/2018
Type of Workscientific: mathematics
ISBN Number1083-2564
AMS34A55, 46S50, 62G07, 93E24
Abstract

We consider nonparametric estimation of probability measures for parameters in problems where only aggregate (population level) data are available. We summarize an existing computational method for the estimation problem which has been developed over the past several decades \cite{BaBi,BBPP,BF,BHT2014,BKTReview}.  Theoretical results are presented which establish the existence and consistency of very general (ordinary, generalized and other) least squares estimates and estimators for the measure estimation problem with specific application to random PDEs.

URLhttps://acadsol.eu/en/articles/22/3/6.pdf
DOI10.12732/caa.v22i3.6
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. A. Albanese, H. T. Banks, M. V. Evans, and L. K. Potter, Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue, Bulletin of Mathematical Biology 64 (2002), no. 1, 97.
[2] A. L. Baldock, S. Ahn, R. Rockne, S. Johnston, M. Neal, D. Corwin, K. Clark-Swanson, G. Sterin, A. D. Trister, H.Malone, et al., Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas, PloS One 9 (2014), no. 10, e99057.
[3] H. T. Banks, J. Crowley, and K. Kunisch, Cubic spline approximation techniques for parameter estimation in distributed systems, IEEE Transactions on Automatic Control 28 (1983), no. 7, 773-786.
[4] H. T. Banks, V. Bokil, S. Hu, A. K. Dhar, R. Bullis, C. Browdy, and F. Allmutt, Modeling shrimp biomass and viral infection for production of biological countermeasures, Mathematical Biosciences and Engineering 3 (2006), no. 4, 635-660.
[5] H. T. Banks, D. Bortz, G. Pinter, and L. Potter, Modeling and imaging techniques with potential for application in bioterrorism, Bioterrorism: 438 H.T. BANKS ET AL Mathematical Modeling Applications in Homeland Security, SIAM, 2003, pp. 129-154.
[6] H. T. Banks, D. Bortz, and S. Holte, Incorporation of variability into the modeling of viral delays in hiv infection dynamics, Mathematical Biosciences 183 (2003), no. 1, 63-91.
[7] H. T. Banks, L. W. Botsford, F. Kappel, and C. Wang, Modeling and estimation in size structured population models, LCDS-CCS Report 87-13, Brown University; Proc. 2nd Course on Mathematical Ecology, (Trieste, December 8-12, 1986) (1988), 521-541.
[8] H. T. Banks, J. Catenacci and S. Hu, Use of difference-based methods to explore statistical and mathematical model discrepancy in inverse problems, CRSC-TR15-05, May, 2015; J. Inverse Ill-Posed Problems, 24 (2016), 413-433.
[9] H. T. Banks and J. L. Davis, Quantifying uncertainty in the estimation of probability distributions with confidence bands, CRSC-TR07-21, December, 2007; Mathematical Biosciences and Engineering 5 (2008), 647-667.
[10] H. T. Banks and J. L. Davis, A comparison of approximation methods for the estimation of probability distributions on parameters, Applied Numerical Mathematics 57 (2007), no. 5-7, 753-777.
[11] H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich, and A. K. Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations, Inverse Problems 25 (2009), no. 9, 095003.
[12] H. T. Banks and B. G. Fitzpatrick, Estimation of growth rate distributions in size structured population models, Quarterly of Applied Mathematics 49 (1991), no. 2, 215-235.
[13] H. T. Banks, K. B. Flores, C. R. Langlois, T. R. Serio, and S. S. Sindi, Estimating the rate of prion aggregate amplification in yeast with a generation and structured population model, Inverse Problems in Science and Engineering (2017), 1-23. AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs 439
[14] H. T. Banks and N. L. Gibson, Electromagnetic inverse problems involving distributions of dielectric mechanisms and parameters, CRSC-TR05-29, August, 2005; Quarterly of Applied Mathematics 64 (2006), 749-795.
[15] H. T. Banks and N. L. Gibson, Well-posedness in maxwell systems with distributions of polarization relaxation parameters, Applied Mathematics Letters 18 (2005), no. 4, 423-430.
[16] H. T. Banks, Z. R. Kenz, and W. C. Thompson, A review of selected techniques in inverse problem nonparametric probability distribution estimation, CRSC-TR12-13, May 2012; J. Inverse and Ill-Posed Problems (2012), 429-460.
[17] H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Birkhausen, Boston, 1989.
[18] H. T. Banks and P. Lamm, Estimation of variable coefficients in parabolic distributed systems, IEEE Transactions on Automatic Control 30 (1985), no. 4, 386-398.
[19] H. T. Banks and K. Murphy, Estimation of nonlinearities in parabolic models for growth, predation, and dispersal of populations, Journal of Mathematical Analysis and Applications 141 (1989), no. 2, 580-602.
[20] H. T. Banks and G. A. Pinter, A probabilistic multiscale approach to hysteresis in shear wave propagation in biotissue, Multiscale Modeling & Simulation 3 (2005), no. 2, 395-412.
[21] H. T. Banks and L. K. Potter, Probabilistic methods for addressing uncertainty and variability in biological models: Application to a toxicokinetic model, CRSC-TR02-27, September, 2002; Mathematical Biosciences 192 (2004), 193-22.
[22] H. T. Banks and W. C. Thompson, Existence and consistency of a nonparametric estimator of probability measures in the Prohorov Metric Framework, International Journal of Pure and Applied Mathematics 103 (2015), no. 4, 819-843.
[23] H. T. Banks, A functional analysis framework for modeling, estimation and control in science and engineering, CRC Press, 2012.
[24] H. T. Banks and K. L. Bihari, Modelling and estimating uncertainty in parameter estimation, Inverse Problems 17 (2001), no. 1, 95.
[25] H. T. Banks, P. M. Kareiva, and K. A. Murphy, Parameter estimation techniques for interaction and redistribution models: a predator-prey example, Oecologia 74 (1987), no. 3, 356-362.
[26] H. T. Banks and K. A. Murphy, Quantitative modeling of growth and dispersal in population models, Mathematical topics in population biology, morphogenesis and neurosciences, Springer, 1987, pp. 98-109.
[27] H. T. Banks and H. T. Tran, Mathematical and experimental modeling of physical and biological processes, CRC Press, 2009.
[28] H. T. Banks, S. Hu, andW. C. Thompson, Modeling and inverse problems in the presence of uncertainty, CRC Press, 2014.
[29] S. L. Beal and L. B. Sheiner, Estimating population kinetics., Critical Reviews in Biomedical Engineering 8 (1982), no. 3, 195-222.
[30] P.-Y. Bondiau, O. Clatz, M. Sermesant, P.-Y. Marcy, H. Delingette, M. Frenay, and N. Ayache, Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging, Physics in Medicine and Biology 53 (2008), no. 4, 879.
[31] O. Clatz, M. Sermesant, P.-Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain, and N. Ayache, Realistic simulation of the 3-d growth of brain tumors in mr images coupling diffusion with biomechanical deformation, IEEE Transactions on Medical Imaging 24 (2005), no. 10, 1334-1346.
[32] Z. Dai, I. Rosen, C. Wang, N. Barnett, and S. E. Luczak, Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors., Mathematical Biosciences and Engineering 13 (2016), no. 5, 911-934.
[33] M. Davidian and A. R. Gallant, Smooth nonparametric maximum likelihood estimation for population pharmacokinetics, with application to quinidine, Journal of Pharmacokinetics and Biopharmaceutics 20 (1992), no. 5, 529-556.
[34] M. Davidian and A. R. Gallant, The nonlinear mixed effects model with a smooth random effects density, Biometrika 80 (1993), no. 3, 475-488.
[35] M. Davidian and D. M. Giltinan, Nonlinear models for repeated measurement data, Chapman & Hall, 1995.
[36] M. Davidian and D. M. Giltinan, Nonlinear models for repeated measurement data: an overview and update, Journal of Agricultural, Biological, and Environmental Statistics 8 (2003), no. 4, 387.
[37] D. M. Dougherty, N. E. Charles, A. Acheson, S. John, R. M. Furr, and N. Hill-Kapturczak, Comparing the detection of transdermal and breath alcohol concentrations during periods of alcohol consumption ranging from moderate drinking to binge drinking., Experimental and Clinical Psychopharmacology 20 (2012), no. 5, 373.
[38] D. M. Dougherty, N. Hill-Kapturczak, Y. Liang, T. E. Karns, S. E. Cates, S. L. Lake, J. Mullen, and J. D. Roache, Use of continuous transdermal alcohol monitoring during a contingency management procedure to reduce excessive alcohol use, Drug & Alcohol Dependence 142 (2014), 301-306.
[39] D. M. Dougherty, T. E. Karns, J. Mullen, Y. Liang, S. L. Lake, J. D. Roache, and N. Hill-Kapturczak, Transdermal alcohol concentration data collected during a contingency management program to reduce at-risk drinking, Drug & Alcohol Dependence 148 (2015), 77-84.
[40] M. A. Dumett, I. Rosen, J. Sabat, A. Shaman, L. Tempelman, C. Wang, and R. Swift, Deconvolving an estimate of breath measured blood alcohol concentration from biosensor collected transdermal ethanol data, Applied Mathematics and Computation 196 (2008), no. 2, 724-743.
[41] C. E. Fairbairn, K. Bresin, D. Kang, I. G. Rosen, T. Ariss, S. E. Luczak, N. P. Barnett, and N. S. Eckland, A multimodal investigation of contextual effects on alcohol’s emotional rewards., Journal of Abnormal Psychology 127 (2018), no. 4, 359.
[42] A. R. Gallant, Nonlinear statistical models, John Wiley & Sons, 1987.
[43] P. Gerlee and S. Nelander, Travelling wave analysis of a mathematical model of glioblastoma growth, Mathematical Biosciences and Engineering 276 (2016), 75-81.
[44] N. L. Gibson, Terahertz-based electromagnetic interrogation techniques for damage detection, Ph.D. thesis, North Carolina State University, August 2004.
[45] H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, and A. Deutsch, ‘Go or grow’: the key to the emergence of invasion in tumour progression?, Mathematical Medicine and Biology 29 (2012), no. 1, 49-65.
[46] S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K. R. Swanson, M. P´el´egrini-Issac, R. Guillevin, and H. Benali, Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging, Magnetic Resonance in Medicine 54 (2005), no. 3, 616-624.
[47] E. Konukoglu, O. Clatz, P.-Y. Bondiau, M. Sermesant, H. Delingette, and N. Ayache, Towards an identification of tumor growth parameters from time series of images, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007, Springer, 2007, pp. 549-556.
[48] D. A. Labianca, The chemical basis of the breathalyzer: A critical analysis, Journal of Chemical Education 67 (1990), no. 3, 259.
[49] B. G. Lindsay, Mixture models: theory, geometry and applications, NSFCBMS regional conference series in probability and statistics, JSTOR, 1995, pp. i-163.
[50] B. G. Lindsay et al., The geometry of mixture likelihoods: a general theory, The Annals of Statistics 11 (1983), no. 1, 86-94.
[51] B. G. Lindsay and M. L. Lesperance, A review of semiparametric mixture models, Journal of Statistical Planning and Inference 47 (1995), no. 1-2, 29-39.
[52] S. E. Luczak, I. G. Rosen, and T. L. Wall, Development of a real-time repeated-measures assessment protocol to capture change over the course of a drinking episode, Alcohol and Alcoholism 50 (2015), no. 2, 180-187.
[53] A. Mallet, A maximum likelihood estimation method for random coefficient regression models, Biometrika 73 (1986), no. 3, 645-656.
[54] N. L. Martirosyan, E. M. Rutter, W. L. Ramey, E. J. Kostelich, Y. Kuang, and M. C. Preul, Mathematically modeling the biological properties of gliomas: A review, Mathematical Biosciences and Engineering 12 (2015), no. 4, 879-905.
[55] J. D. Murray, Mathematical biology ii: Spatial models and biomedical applications, 3 ed., Springer-Verlag New York Incorporated, 2003.
[56] K. Painter and T. Hillen, Mathematical modelling of glioma growth: the use of diffusion tensor imaging (dti) data to predict the anisotropic pathways of cancer invasion, Journal of Theoretical Biology 323 (2013), 25- 39.
[57] L. K. Potter, Physiologically based pharmacokinetic models for the systemic transport of trichloroethylene, Ph.D. thesis, North Carolina State Univeristy, August 2001.
[58] P. M. Prenter, Splines and variational methods, John Wiley & Sons, 1975.
[59] I. G. Rosen, S. E. Luczak, and J. Weiss, Blind deconvolution for distributed parameter systems with unbounded input and output and determining blood alcohol concentration from transdermal biosensor data, Applied Mathematics and Computation 231 (2014), 357-376.
[60] E. M. Rutter, H. T. Banks, and K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, Journal of Mathematical Biology (2018).
[61] E. M. Rutter, T. L. Stepien, B. J. Anderies, J. D. Plasencia, E. C. Woolf, A. C. Scheck, G. H. Turner, Q. Liu, D. Frakes, V. Kodibagkar, Y. Kuang, M. C. Preul, and E. J. Kostelich, Mathematical analysis of glioma growth in a murine model, Scientific Reports 7 (2017), 2508.
[62] M. H. Schultz, Spline analysis, Prentice-Hall, 1973.
[63] A. Schumitzky, The nonparametric maximum likelihood approach to pharmacokinetic population analysis, Proceedings of the 1993 Western Simulation Multiconference: Simulation for Health Care. San Diego Society for Computer Simulation, 1993, pp. 95-100.
[64] A. Schumitzky, Nonparametric em algorithms for estimating prior distributions, Applied Mathematics and Computation 45 (1991), no. 2, 143- 157.
[65] L. B. Sheiner, B. Rosenberg, and K. L. Melmon, Modelling of individual pharmacokinetics for computer-aided drug dosage, Computers and Biomedical Research 5 (1972), no. 5, 441-459.
[66] J. Simmons, W. Boyes, P. Bushnell, J. Raymer, T. Limsakun, A. McDonald, Y. Sey, and M. Evans, A physiologically based pharmacokinetic model for trichloroethylene in the male long-evans rat, Toxicological Sciences 69 (2002), no. 1, 3-15.
[67] M. Sirlanci, S. Luczak, and I. Rosen, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, American Control Conference (ACC), 2017, IEEE, 2017, pp. 3171-3176.
[68] M. Sirlanci, S. E. Luczak, C. E. Fairbairn, K. Bresin, D. Kang, and I. Rosen, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, Submitted for publication (2018).
[69] M. Sirlanci, S. E. Luczak, C. E. Fairbairn, D. Kang, R. Pan, X. Yu, and I. Rosen, Estimation of the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, Submitted for publication (2017).
[70] M. Sirlanci and I. Rosen, Estimation of the distribution of random parameters in discrete time abstract parabolic systems with unbounded input and output: Approximation and convergence, Submitted for publication (2017).
[71] A. M. Stein, T. Demuth, D. Mobley, M. Berens, and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a threedimensional in vitro experiment, Biophysical Journal 92 (2007), no. 1, 356-365.
[72] T. L. Stepien, E. M. Rutter, and Y. Kuang, Traveling waves of a goor-grow model of glioma growth, SIAM Journal of Applied Mathematics (2018).
[73] T. L. Stepien, E. M. Rutter, and Y. Kuang, A data-motivated densitydependent diffusion model of in vitro glioblastoma growth, Mathematical Biosciences and Engineering 12 (2015), no. 6, 1157-1172.
[74] G. Strang and G. J. Fix, An analysis of the finite element method, vol. 212, Prentice-hall Englewood Cliffs, NJ, 1973.
[75] K. Swanson, E. Alvord, and J. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Proliferation 33 (2000), no. 5, 317-330.
[76] K. R. Swanson, C. Bridge, J. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, Journal of the Neurological Sciences 216 (2003), no. 1, 1-10.
[77] R. M. Swift, Transdermal alcohol measurement for estimation of blood alcohol concentration, Alcoholism: Clinical and Experimental Research 24 (2000), no. 4, 422-423.
[78] R. M. Swift, Direct measurement of alcohol and its metabolites, Addiction 98 (2003), no. s2, 73-80.
[79] R. M. Swift, Transdermal measurement of alcohol consumption, Addiction 88 (1993), no. 8, 1037-1039.
[80] R. M. Swift, C. S. Martin, L. Swette, A. Laconti, and N. Kackley, Studies on a wearable, electronic, transdermal alcohol sensor, Alcoholism: Clinical and Experimental Research 16 (1992), no. 4, 721-725.
[81] G. Wahba, Bayesian ”confidence intervals” for the cross-validated smoothing spline, Journal of the Royal Statistical Society. Series B (Methodological) (1983), 133-150.
[82] G. Wahba, Splines in nonparametric regression, Wiley Online Library, 2000.
[83] P. Y. Wen and S. Kesari, Malignant gliomas in adults, New England Journal of Medicine 359 (2008), no. 5, 492-507.