SINGULARITY COEFFICIENTS OF THE BIHARMONIC PROBLEM WITH MIXED BOUNDARY CONDITIONS

TitleSINGULARITY COEFFICIENTS OF THE BIHARMONIC PROBLEM WITH MIXED BOUNDARY CONDITIONS
Publication TypeJournal Article
Year of Publication2018
AuthorsKOUICEM, SELMA, CHIKOUCHE, WIDED
Secondary TitleCommunications in Applied Analysis
Volume22
Issue3
Start Page369
Pagination14
Date Published2018
ISSN1083-2564
AMS34A12, 34A45, 34C60
Abstract

In this paper we consider a problem with mixed boundary conditions for the biharmonic equation in a sector. We represent the solution in a series and using an appropriate Green’s formula, we calculate the coefficients of the development and prove its convergence.

URLhttps://acadsol.eu/en/articles/22/3/3.pdf
DOI10.12732/caa.v22i3.3
Refereed DesignationRefereed
Full Text

REFERENCES
[1] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic
operator on domains with angular corners, Math. Meth. in the
Appl. Sci., 2 (1980).
[2] W. Chikouche and A. Aibeche, Coefficients of singularities of the biharmonic
problem of Neumann type: case of the crack, Int. J. Math. Math.
Sci., 5 (2003), 305-313.
[3] P. Grisvard, Singularities in Boundary Value Problems, Recherches en
Math´ematiques Appliqu´ees, Vol. 22, Masson, Paris (1992).
[4] P. Grisvard and G. Geymonat, Eigenfunction Expansions to some
Non-selfadjoint Operators, Lecture notes in Mathematics, No 1121,
Oberwolfach-Springer-Verlag (1983), 123-136.
[5] L. Hormander, Linear Partial Differential Operators, Springer-Verlag (1964).
[6] B. Merouani and R. Boufenouche, Coefficients of singularities for a simply
supported plate problems in plane sectors, Electronic Journal of Differential
Equations, 2013 (2013), No. 238, 1-8.
[7] B. Merouani and R. Boufenouche, Trigonometric series adapted for the
study of Dirichlet boundary-value problems of Lam´e systems, Electronic
Journal of Differential Equations, 2015 (2015), No. 181, 1-6.
[8] O. Tcha-Kondor, Nouvelles s´eries trigonom´etriques adapt´ees `a l’´etude de
probl`emes aux limites pour l’´equation biharmonique. Etude du cas de la
fissure, C. R. Acad. Sci. Paris, 315 (1992), S´erie I, 541-544.
[9] O. Tcha-Kondor, S´eries trigonom´etriques pour l’´etude des probl`emes biharmoniques
dans un secteur d’ouverture quelconque, C. R. Acad. Sci.
Paris, 318 (1994), S´erie I, 735-738.