GLOBAL EXPONENTIAL STABILITY OF POSITIVE PERIODIC SOLUTIONS FOR AN IMPULSIVE LASOTA-WAZEWSKA MODEL WITH DELAYS

TitleGLOBAL EXPONENTIAL STABILITY OF POSITIVE PERIODIC SOLUTIONS FOR AN IMPULSIVE LASOTA-WAZEWSKA MODEL WITH DELAYS
Publication TypeJournal Article
Year of Publication2018
AuthorsZHANG, RUOJUN, ZHANG, JINGJING, YANG, CHUNYU
Secondary TitleIMPULSIVE LASOTA-WAZEWSKA MODEL
Volume22
Issue2
Start Page147
Pagination16
Date Published01/2018
ISBN Number1083-2564
AMS34A37, 34C25, 34D23
Abstract

In this paper, we consider a class of non-autonomous impulsive Lasota-Wazewska model with delays. First, the equivalent relation between the solution (or positive periodic solution) of the Lasota-Wazewska
delayed model with impulsive effects and that of a corresponding delayed Lasota-Wazewska model without impulsive effects is established. Then, by applying algebraic inequalities and Laypunov functional method, some sufficient conditions for the existence and global exponential stability of positive periodic solution of addressed model are given. Finally, an example and its numerical simulation are provided to illustrate the effectiveness of the theoretical results.

URLhttps://www.acadsol.eu/en/articles/22/2/2.pdf
DOI10.12732/caa.v22i2.2
Refereed DesignationRefereed
Full Text

REFERENCES

[1] M. Wazewska-Czyzewska, A. Lasota, Mathematical problems of the dynamics of red blood cells system, Ann. Polish Math. Soc. Ser. III Appl. Math., 17 (1988), 23-40.
[2] M. R. S. Kulenovic, G. Ladas, Y. G. Sficas, Global attractivity in population dynamics, Comput. Math. Appl., 18 (1989), 925-928.
[3] W. Xu, J. Li, Global attractivity of the model for the survival of red blood cells with several delays, Ann. Differential Equations, 14 (1998), 357-363.
[4] K. Gopalsamy, S. Trofimchuk, Almost periodic solutions of Lasota-Wazewska type delay differential equation, J. Math. Anal. Appl., 237 (1999), 106-127.
[5] Y. Kuang, Global attractivity and periodic solutions in delay differential equations related to models in physiology and population biology, J. Ind. Appl. Math., 9 (1992), 205-238.
[6] J. R. Graef, C. Qian, P. W. Spikes, Oscillation and global attractivity in a periodic delay equation, Can. Math. Bull., 38 (1996), 275-183.
[7] G. R. Liu, A. M. Zhao, J. R. Yan, Existence and global attactivity of unique positive periodic solution for a Lasota-Wazewska model, Nonlin. Anal., 64 (2006), 1737-1746.
[8] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[9] D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations: Periodic Solutions and Applications, Longman, Harlow, 1993.
[10] A. M. Samoilenko, N. A. Perestyuk, Differential Equations with Impulsive Effect, World Scientific, Singapore, 1995.
[11] Gani. Tr. Stamov, On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model, Appl. Math. Lett. , 22 (2009), 516-520.
[12] B. W. Liu, The existence and uniqueness of positive periodic solutions of Nicholson-type delay systems, Nonlinear Anal. RWA , 12, No. 6 (2011), 3145-3151.
[13] Z. D. Teng, L. F. Nie, X. N. Fang, The periodic solutions for general periodic impulsive population systems of functional differential equations and its applications, Comput. Math. Appl. , 61 (2011), 2690-2703 .
[14] R. X. Liang, J. H. Shen, Positive periodic solutions for impulsive predator-prey model with dispersion and time delays, Appl. Math. Comput., 217 (2010), 661-676.
[15] K. Wang, Y. L. Zhu, Periodic solutions, permanence and global attractivity of a delayed impulsive prey-predator system with mutual interference, Nonlinear Anal. RWA , 14 (2013), 1044-1054.
[16] J. R. Yan, A. M. Zhao, J. J. Nieto, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems, Math. Comput. Model., 40, No-s: 5-6 (2004), 509-518.
[17] J. R. Yan, A. M. Zhao, Oscillation and stability of linear impulsive delay differential equations, J. Math. Anal. Appl., 227, No. 1 (1998), 187-194.
[18] J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[19] H. L. Smith, Dynamical Systems, Math. Surveys. Monogr. Amer. Math. Soc., Providence. RI, 1995.
[20] E. Liz, V. Tkachenko, S. Trofimchuk, A global stability criterion for scalar functional differential equation, SIAM. J. Math. Anal., 35, No. 3 (2003), 596-622.