REFERENCES
[1] M. Wazewska-Czyzewska, A. Lasota, Mathematical problems of the dynamics of red blood cells system, Ann. Polish Math. Soc. Ser. III Appl. Math., 17 (1988), 23-40.
[2] M. R. S. Kulenovic, G. Ladas, Y. G. Sficas, Global attractivity in population dynamics, Comput. Math. Appl., 18 (1989), 925-928.
[3] W. Xu, J. Li, Global attractivity of the model for the survival of red blood cells with several delays, Ann. Differential Equations, 14 (1998), 357-363.
[4] K. Gopalsamy, S. Trofimchuk, Almost periodic solutions of Lasota-Wazewska type delay differential equation, J. Math. Anal. Appl., 237 (1999), 106-127.
[5] Y. Kuang, Global attractivity and periodic solutions in delay differential equations related to models in physiology and population biology, J. Ind. Appl. Math., 9 (1992), 205-238.
[6] J. R. Graef, C. Qian, P. W. Spikes, Oscillation and global attractivity in a periodic delay equation, Can. Math. Bull., 38 (1996), 275-183.
[7] G. R. Liu, A. M. Zhao, J. R. Yan, Existence and global attactivity of unique positive periodic solution for a Lasota-Wazewska model, Nonlin. Anal., 64 (2006), 1737-1746.
[8] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[9] D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations: Periodic Solutions and Applications, Longman, Harlow, 1993.
[10] A. M. Samoilenko, N. A. Perestyuk, Differential Equations with Impulsive Effect, World Scientific, Singapore, 1995.
[11] Gani. Tr. Stamov, On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model, Appl. Math. Lett. , 22 (2009), 516-520.
[12] B. W. Liu, The existence and uniqueness of positive periodic solutions of Nicholson-type delay systems, Nonlinear Anal. RWA , 12, No. 6 (2011), 3145-3151.
[13] Z. D. Teng, L. F. Nie, X. N. Fang, The periodic solutions for general periodic impulsive population systems of functional differential equations and its applications, Comput. Math. Appl. , 61 (2011), 2690-2703 .
[14] R. X. Liang, J. H. Shen, Positive periodic solutions for impulsive predator-prey model with dispersion and time delays, Appl. Math. Comput., 217 (2010), 661-676.
[15] K. Wang, Y. L. Zhu, Periodic solutions, permanence and global attractivity of a delayed impulsive prey-predator system with mutual interference, Nonlinear Anal. RWA , 14 (2013), 1044-1054.
[16] J. R. Yan, A. M. Zhao, J. J. Nieto, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems, Math. Comput. Model., 40, No-s: 5-6 (2004), 509-518.
[17] J. R. Yan, A. M. Zhao, Oscillation and stability of linear impulsive delay differential equations, J. Math. Anal. Appl., 227, No. 1 (1998), 187-194.
[18] J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[19] H. L. Smith, Dynamical Systems, Math. Surveys. Monogr. Amer. Math. Soc., Providence. RI, 1995.
[20] E. Liz, V. Tkachenko, S. Trofimchuk, A global stability criterion for scalar functional differential equation, SIAM. J. Math. Anal., 35, No. 3 (2003), 596-622.