**REFERENCES**

[1] V. Alexiades, A.D. Solomon, Mathematical Modelling of Melting and

Freezing Processes, Hemisphere-Taylor, Francis, Washington (1993).

[2] A. C. Briozzo, M.F. Natale, D.A. Tarzia, The Stefan problem with

temperature-dependent thermal conductivity and a convective term with

a convective condition at the fixed face, Comm. Pure Appl. Anal., 9

(2010), 1209-1220.

[3] J.R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley,

Menlo Park, California (1984).

[4] H.S. Carslaw, C.J. Jaeger, Conduction of Heat in Solids, Clarendon Press,

Oxford (1959).

[5] J. Crank, Free and Moving Boundary Problem, Clarendon Press, Oxford

(1984).

[6] S.C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling

and Analysis, Elsevier, Amsterdam (2003).

[7] J. Lorenzo-Trueba, V.R. Voller, Analytical and numerical solution of a

generalized Stefan Problem exhibiting two moving boundaries with application

to ocean delta deformation, J. Math. Anal. Appl., 366 (2010),

538-549.

[8] V.J. Lunardini, Heat Transfer with Freezing and Thawing, Elsevier, London

(1991).

[9] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of

Mathematical Functions, Cambridge University Press, New York (2010).

[10] L.L. Perchuk, Progress in Metamorphic and Magmatic Petrology, Cambridge

University Press, Wallingford, UK (2003).

[11] M. Primicerio, Stefan-like problems with space-dependent latent heat,

Meccanica, 5 (1970), 187-190.

[12] C. Rogers, Application of a reciprocal transformation to a two-phase Stefan

problem, J. Phys. A -Math. Gen., 18 (1985), L105-L109.

[13] L.I. Rubinstein, The Stefan Problem, American Mathematical Society,

Providence (1971).

[14] N.N. Salva, D.A. Tarzia, Explicit solution for a Stefan problem with variable

latent heat and constant heat flux boundary conditions, J. Math.

Anal. Appl., 379 (2011), 240-244.

[15] D.A. Tarzia, An inequality for the coefficient σ of the free boundary

s(t) = 2σ

√

t of the Neumann solution for the two-phase Stefan problem,

Quart. Appl. Math., 39 (1982), 491-497.

[16] D.A. Tarzia, A bibliography on moving-free boundary problems for the

heat-diffusion equation. The Stefan and related problems, MAT-Serie A,

2 (2000), 1-297.

[17] D.A. Tarzia, Explicit and approximated solutions for heat and mass transfer

problems with a moving interface, Chapter 20, In: Advanced Topics in

Mass Transfer, M. El-Amin (Ed.), InTech Open Access Publisher, Rijeka

(2011), 439-484.

[18] D.A. Tarzia, Relationship between Neumann solutions for two phase

Lam´e-Clapeyron-Stefan problems with convective and temperature

boundary conditions, Thermal Sci., 21 No 1 Part A (2017), 1-11.

[19] V.R. Voller, J.B. Swenson, C. Paola, An analytical solution for a Stefan

problem with variable latent heat, Int. J. Heat Mass Transfer., 47 (2004),

5387-5390.

[20] Y. Zhou, Y.J. Wang, W. K. Bu, Exact solution for a Stefan problem with

latent heat a power function of position, Int. J. Heat Mass Transfer, 69

(2014), 451-454.

[21] Y. Zhou, L.J. Xia, Exact solution for Stefan problem with general powertype

latent heat using Kummer function, Int. J. Heat Mass Transfer, 84

(2015), 114-118.