Title | EXISTENCE THEOREM FOR LINEAR NEUTRAL IMPULSIVE DIFFERENTIAL EQUATIONS OF THE SECOND ORDER |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | ABASIEKWERE, UA, ESUABANA, IM, ISAAC, IO, LIPSCEY, Z |
Secondary Title | LINEAR NEUTRAL IMPULSIVE EQUATIONS |
Volume | 22 |
Issue | 2 |
Start Page | 135 |
Pagination | 12 |
Date Published | 01/2018 |
Type of Work | scientific: mathematics |
ISBN Number | 1083-2564 |
AMS | 34K11, 34K40, 34K45 |
Abstract | In this paper, we consider the second order linear neutral impulsive differential equation of the form $$ \left\{\begin{array}{ll} \left[y\left(t\right)- p y\left(t-\tau \right)\right]^{{''} } + q\left(t\right)y\left(g\left(t\right)\right) = 0, &\quad t\ne t_{k},\\ \Delta \left[y\left(t_{k} \right)- p y\left(t_{k} -\tau \right)\right]^{{'} } + q_{k} y\left(g\left(t_{k} \right)\right) = 0, &\quad \forall t=t_{k} , \end{array}\right. $$ where $p\in R$, $ q_{k} \ge 0$, $ q \in P C \left(\left[t_{0} ,\infty \right), R_{+} \right)$, $ g\in C\left(\left[t_{0} ,\infty \right), R\right)$, $ \mathop{\lim }\limits_{t\to \infty } g \left(t\right)= \infty ,$ $\tau >0.$ We establish conditions for the existence of a positive solution with asymptotic decay by defining a map which satisfies the assumptions of Krasnoselkii’s fixed point theorem. |
URL | https://acadsol.eu/en/articles/22/2/1.pdf |
DOI | 10.12732/caa.v22i2.1 |
Refereed Designation | Refereed |
Full Text | REFERENCES
[1] D.D. Bainov and P.S. Simeonov, Oscillation Theory of Impulsive Differential Equations, International Publications Orlando, Florida, 1998. |