LINEAR COMBINATIONS OF 2-ORTHOGONAL POLYNOMIALS: GENERATION AND DECOMPOSITION PROBLEMS

TitleLINEAR COMBINATIONS OF 2-ORTHOGONAL POLYNOMIALS: GENERATION AND DECOMPOSITION PROBLEMS
Publication TypeJournal Article
Year of Publication2018
AuthorsNASRI, AHMED, BOUKHEMIS, AMMAR, ESPAÑOL, FRANCISCOMARCELLÁ
Secondary TitleLINEAR COMBINATIONS OF 2-ORTHOGONAL POLYNOMIALS
Volume22
Issue1
Start Page97
Pagination24
Date Published01/2018
Type of Workscientific: mathematics
ISSN1083-2564
AMS33C45, 42C05
Abstract

In this work we are interested in the study of the $2$-orthogo\-nality of sequences of monic $2$-orthogonal polynomials $\left \{ P_{n}\right \} _{n\geq \text{ }\text{ }0}$ and $\left \{ Q_{n}\right \} _{n\geq 0}$ satisfying the relation $Q_{n+1}(x)=P_{n+1}(x)+\alpha _{n+1}P_{n}(x),$ $n\geq $ $0,$where $\alpha _{n},$ $n\geq $ $1,$ are nonzero complex numbers. The sequence $\left \{ Q_{n}\right \} _{n\geq 0}$ is said to be generated with $2$ terms of the sequence $\left \{ P_{n}\right \} _{n\geq 0}$ and the sequence $\left \{ P_{n}\right \} _{n\geq 0}$ is said to be a decomposition of the sequence $\left \{ Q_{n}\right \} _{n\geq 0}$ with $2$ terms. First, we give necessary and sufficient conditions for the $2$-orthogonality of the sequence $\left \{ Q_{n}\right \} _{n\geq 0}$ assuming the $2$-orthogonality   of the sequence $\left \{ P_{n}\right \} _{n\geq 0}.$ Second, assuming the sequence $\left \{ Q_{n}\right \} _{n\geq 0}$ is $2$-orthogonal we get necessary and sufficient conditions for the existence of a sequence $\left \{ P_{n}\right \} _{n\geq 0}$ satisfying the above relation and such that it is $2$ orthogonal. Indeed, we characterize the $2$-orthogonality of these sequences in terms of the coefficients of the corresponding four term r\'{e}currence relations. Next, we study our problem as an inverse problem  for $2$-monic orthogonal polynomials. Furthermore, the relation between the  banded Hessenberg matrices associated with the multiplication operator in  terms of \pagebreak the bases $\left \{ P_{n}\right \} _{n\geq 0}$ and $\left \{ Q_{n}\right \} _{n\geq 0}$ is analyzed. Finally, we give many examples of  such related $2$-orthogonal polynomial sequences.

URLhttp://www.acadsol.eu/en/articles/22/1/7.pdf
DOI10.12732/caa.v22i1.7
Refereed DesignationRefereed
Full Text

REFERENCES
[1] M. Alfaro, F. Marcell´an, A. Pe˜na, M.L. Rezola, On linearly related orthogonal polynomials and their functionals, J. Math. Anal. Appl., 287 (2003), 307-319.
[2] M. Alfaro, F. Marcell´an, A. Pe˜na, M.L. Rezola, When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials? J. Comput. Appl. Math., 233 (2010), 1446-1452.
[3] M. Alfaro, A. Pe˜na, M.L. Rezola, F. Marcell´an, Orthogonal polynomials associated with an inverse quadratic spectral transform, Comput. Math. Appl., 61 (2011), 888-900.
[4] A. Boukhemis, A study of a sequence of classical orthogonal polynomials of dimension 2, J. Approx. Theory, 90 (1997) 435-454.
[5] A. Boukhemis, On the classical 2-orthogonal polynomials sequences of Sheffer-Meixner type, Math. J. Universidad de La Frontera, 7, No. 2 (2005), 39 pp.
[6] A. Boukhemis, P. Maroni, Une caract´erisation des polynˆomes strictement 1/p orthogonaux de type Scheffer. ´Etude du cas p = 2, J. Approx. Theory, 54 (1988) 67-91.
[7] A. Boukhemis, E. Zerouki, Classical 2-orthogonal polynomials and differential equations, Int. J. Math. and Math. Sci. (2006), Art. ID 12640, 32 pp.
[8] T.S. Chihara, An Introduction to Orthogonal Polynomials, New York, Gordon and Breach, 1978.
[9] K. Douak, P. Maroni, On d-orthogonal Tchebychev polynomials, I Appl. Numer. Math., 24 (1997), 23-53.
[10] K. Douak, Y. Ben Cheikh, On two-orthogonal polynomials related to the Bateman’s function, Methods Appl. Anal., 7 (2000), 641-662.
[11] P. Maroni, L’orthogonalit´e et les r´ecurrences de polynˆomes d’ordre sup´erieur `a deux, Ann. Fac. Sci. Toulouse, 10 (1989), 105-139.
[12] P. Maroni, Sur la suite de polynˆomes orthogonaux associe´e `a la forme $u = \delta_c + \lambda(x − c)^{-1}L$, Period Math Hungar, 21 (1990), 223-248.
[13] P. Maroni, Two-dimensional orthogonal polynomials, their associated sets and the co-recursive sets, Numer Algorithms, 3 (1992), 299-311.
[14] P. Maroni, Semi-classical character and finite-type relations between polynomial sequences, Appl. Numer. Math., 31 (1999), 295-330.
[15] E.D. Rainville, Special Functions, New York, The Macmillan Co 1, 1960.
[16] A. Saib, E. Zerouki, Some inverse problems for d-orthogonal polynomials, Mediterr. J. Math., 10 (2013), 865-885.
[17] A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math., 85 (1997), 67-86.