THIRD-ORDER DIFFERENTIAL SANDWICH-TYPE RESULT OF MEROMORPHIC p-VALENT FUNCTIONS ASSOCIATED WITH A CERTAIN LINEAR OPERATOR

TitleTHIRD-ORDER DIFFERENTIAL SANDWICH-TYPE RESULT OF MEROMORPHIC p-VALENT FUNCTIONS ASSOCIATED WITH A CERTAIN LINEAR OPERATOR
Publication TypeJournal Article
Year of Publication2018
AuthorsAL-JANABY, HIBAF, GHANIM, F, DARUS, M
Secondary TitleTHIRD-ORDER DIFFERENTIAL SANDWICH-TYPE RESULT
Volume22
Issue1
Start Page63
Pagination20
Date Published01/2018
Type of Workscientific: mathematics
ISBN Number1083-2564
AMS26A33, 30C45, 30C50
Abstract

By utilizing a certain linear operator considered on meromorphic multivalent functions (MMF) in the punctured unit disk $Y^*$. We investigate the third-order differential subordination and superordination results. The outcomes here are acquired by introducing appropriate class of admissible functions. Sufficient conditions are determined to gain the best dominant and the best subordinate, respectively. Differential sandwich-type result is also derived.

URLhttps://acadsol.eu/en/articles/22/1/5.pdf
DOI10.12732/caa.v22i1.5
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. M. El-Ashwah, A note on certain meromorphic p-valent functions,
Applied Mathematics Letters, 22, No. 11 (2009), 1756-1759.
[2] G. M. Goluzin, On the majorization principle in function theory (Rus-
sian), Doklady Akademii Nauk SSSR, 42 (1935), 647-650.
[3] R. Robinson, Univalent majorants, Transactions of the American Math-
ematical Society, 61, No. 1 (1947), 1-35.
[4] D. J. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Pro-
ceedings of the American Mathematical Society, 52, No. 1 (1975), 191-
195, doi: 10.2307/2040127.
[5] S. Ruscheweyh, New criteria for univalent functions, Proceedings of
the American Mathematical Society, 49, No. 1 (1975), 109-115, doi:
10.2307/2039801.
80 H.F. Al-Janaby, F. Ghanim, M. Darus
[6] S.S. Miller, P. T. Mocanu, Differential subordinations and inequalities in
the complex plane, Journal of Differential Equations, 67, No. 2 (1987),
199-211, doi: 10.1016/0022-0396(87)90146-X.
[7] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Appli-
cations, Marcel Dekker, New York, (2000).
[8] S.S. Miller, P.T. Mocanu, Subordinants of differential superordinations,
Complex Variables and Elliptic Equations, 48, No. 10 (2003), 815826,
doi: 10.1080/02781070310001599322.
[9] R. M. Ali, V. Ravichandran, N. Seenivasagan, Subordination and super-
ordination of the Liu-Srivastava linear operator on meromorphic func-
tions, Bulletin of the Malaysian Mathematical Sciences Society, 31, No.
2 (2008), 193-207.
[10] R. M. Ali, V. Ravichandran, N. Seenivasagan, Subordination and super-
ordination on Schwarzian derivatives, Journal of Inequalities and Appli-
cations, 2008, No. 1 (2008), 1-18, doi: 10.1155/2008/712328.
[11] R. M. Ali, V. Ravichandran, N. Seenivasagan, Differential subordination
and superordination of analytic functions defined by the multiplier trans-
formation, Mathematical Inequalities and Applications, 12, No. 1 (2009),
123-139, doi: 10.7153/mia-12-11.
[12] R. M. Ali, V. Ravichandran, N. Seenivasagan, Differential subordination
and superordination of analytic functions defined by Dziok-Srivastava lin-
ear operator, Journal of the Franklin Institute, 347, No. 9 (2010),1762-
1781, doi: 10.1016/j.jfranklin.2010.08.009.
[13] R. M. Ali, V. Ravichandran, N. Seenivasagan, On subordination and
superordination of the multiplier transformation for meromrphic func-
tions, Bulletin of the Malaysian Mathematical Sciences Society, 33, No.
2 (2010), 311-324.
[14] N. E. Cho, O. S. Kwon, A class of integral operators preserving subor-
dination and superordination, Bulletin of the Malaysian Mathematical
Sciences Society, 33, No. 3 (2010), 429-437.
THIRD-ORDER DIFFERENTIAL SANDWICH-TYPE RESULT 81
[15] R. G. Xiang, Z. G.Wang, M. Doris, A family of integral operators preserv-
ing subordination and superordination, Bulletin of the Malaysian Mathe-
matical Sciences Society, 33, No. 1 (2010), 121-131.
[16] R. M. Ali, R. Chandrashekar, S. Lee, A. Swaminathan, V. Ravichandran,
Differential sandwich theorem for multivalent analytic functions associ-
ated with the Liu-Srivastava operator, Kyungpook mathematical journal,
51, No. 2 (2011), 217-232, doi: 10.5666/kmj.2011.51.2.217.
[17] R. M. Ali, M. M. Nargesi, V. Ravichandran, On subordination and super-
ordination of linear operators satisfying a recurrence relation, Journal of
Analysis, 19, (2011), 61-70.
[18] N. E. Cho, and T. Bulboacˇa, A class of integral operators preserving
subordination and superordination, Complex Variables and Elliptic Equa-
tions, 58, No. 7 (2013), 909-921, doi: 10.1080/17476933.2011.603416.
[19] J. A. Antonino, S.S.Miller, Third-order differential inequalities and subor-
dinations in the complex plane, Complex Variables and Elliptic Equations,
56, No. 5 (2011),439-454, doi: 10.1080/17476931003728404.
[20] H. Tang, H. M. Srivastava, Shu-Hai Li, Li-Na Ma, Third-Order Differen-
tial Subordination and Superordination Results for Meromorphically Mul-
tivalent Functions Associated with the Liu-Srivastava Operator, Abstract
and Applied Analysis, 2014, (2014), 1-11, doi: 10.1155/2014/792175.
[21] H. Tang, E. Deniz, Third-order differential subordinations results for an-
alytic functions involving the generalized Bessel functions, Acta Mathe-
matica Scientia, 34, No. 6(2014), 1707-1719.
[22] H. Tang, H. M. Srivastiva, E. Deniz, S. Li, Third-order differential su-
perordination involving the generalized Bessel functions, Bulletin of the
Malaysian Mathematical Sciences Society, 38, No. 4 (2014), 1669-1688,
doi: 10.1007/s40840-014-0108-7.
[23] H. A. Farzana, B. A. Stephen, M. P. Jeyaraman, Third-order differential
subordination of analytic function defined by functional derivative opera-
tor, Annals of the Alexandru Ioan Cuza University-Mathematics, (2014),
1-16, doi: 10.2478/aicu-2014-0028.
82 H.F. Al-Janaby, F. Ghanim, M. Darus
[24] R. W. Ibrahim, M. Z. Ahmad, H. F. Al-Janaby, The Third-Order Differ-
ential Subordination and Superordination involving a fractional operator.
Open Mathematics, 13, No. 1 (2015), 706-728, doi: 10.1515/mat