REFERENCES
[1] R. M. El-Ashwah, A note on certain meromorphic p-valent functions,
Applied Mathematics Letters, 22, No. 11 (2009), 1756-1759.
[2] G. M. Goluzin, On the majorization principle in function theory (Rus-
sian), Doklady Akademii Nauk SSSR, 42 (1935), 647-650.
[3] R. Robinson, Univalent majorants, Transactions of the American Math-
ematical Society, 61, No. 1 (1947), 1-35.
[4] D. J. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Pro-
ceedings of the American Mathematical Society, 52, No. 1 (1975), 191-
195, doi: 10.2307/2040127.
[5] S. Ruscheweyh, New criteria for univalent functions, Proceedings of
the American Mathematical Society, 49, No. 1 (1975), 109-115, doi:
10.2307/2039801.
80 H.F. Al-Janaby, F. Ghanim, M. Darus
[6] S.S. Miller, P. T. Mocanu, Differential subordinations and inequalities in
the complex plane, Journal of Differential Equations, 67, No. 2 (1987),
199-211, doi: 10.1016/0022-0396(87)90146-X.
[7] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Appli-
cations, Marcel Dekker, New York, (2000).
[8] S.S. Miller, P.T. Mocanu, Subordinants of differential superordinations,
Complex Variables and Elliptic Equations, 48, No. 10 (2003), 815826,
doi: 10.1080/02781070310001599322.
[9] R. M. Ali, V. Ravichandran, N. Seenivasagan, Subordination and super-
ordination of the Liu-Srivastava linear operator on meromorphic func-
tions, Bulletin of the Malaysian Mathematical Sciences Society, 31, No.
2 (2008), 193-207.
[10] R. M. Ali, V. Ravichandran, N. Seenivasagan, Subordination and super-
ordination on Schwarzian derivatives, Journal of Inequalities and Appli-
cations, 2008, No. 1 (2008), 1-18, doi: 10.1155/2008/712328.
[11] R. M. Ali, V. Ravichandran, N. Seenivasagan, Differential subordination
and superordination of analytic functions defined by the multiplier trans-
formation, Mathematical Inequalities and Applications, 12, No. 1 (2009),
123-139, doi: 10.7153/mia-12-11.
[12] R. M. Ali, V. Ravichandran, N. Seenivasagan, Differential subordination
and superordination of analytic functions defined by Dziok-Srivastava lin-
ear operator, Journal of the Franklin Institute, 347, No. 9 (2010),1762-
1781, doi: 10.1016/j.jfranklin.2010.08.009.
[13] R. M. Ali, V. Ravichandran, N. Seenivasagan, On subordination and
superordination of the multiplier transformation for meromrphic func-
tions, Bulletin of the Malaysian Mathematical Sciences Society, 33, No.
2 (2010), 311-324.
[14] N. E. Cho, O. S. Kwon, A class of integral operators preserving subor-
dination and superordination, Bulletin of the Malaysian Mathematical
Sciences Society, 33, No. 3 (2010), 429-437.
THIRD-ORDER DIFFERENTIAL SANDWICH-TYPE RESULT 81
[15] R. G. Xiang, Z. G.Wang, M. Doris, A family of integral operators preserv-
ing subordination and superordination, Bulletin of the Malaysian Mathe-
matical Sciences Society, 33, No. 1 (2010), 121-131.
[16] R. M. Ali, R. Chandrashekar, S. Lee, A. Swaminathan, V. Ravichandran,
Differential sandwich theorem for multivalent analytic functions associ-
ated with the Liu-Srivastava operator, Kyungpook mathematical journal,
51, No. 2 (2011), 217-232, doi: 10.5666/kmj.2011.51.2.217.
[17] R. M. Ali, M. M. Nargesi, V. Ravichandran, On subordination and super-
ordination of linear operators satisfying a recurrence relation, Journal of
Analysis, 19, (2011), 61-70.
[18] N. E. Cho, and T. Bulboacˇa, A class of integral operators preserving
subordination and superordination, Complex Variables and Elliptic Equa-
tions, 58, No. 7 (2013), 909-921, doi: 10.1080/17476933.2011.603416.
[19] J. A. Antonino, S.S.Miller, Third-order differential inequalities and subor-
dinations in the complex plane, Complex Variables and Elliptic Equations,
56, No. 5 (2011),439-454, doi: 10.1080/17476931003728404.
[20] H. Tang, H. M. Srivastava, Shu-Hai Li, Li-Na Ma, Third-Order Differen-
tial Subordination and Superordination Results for Meromorphically Mul-
tivalent Functions Associated with the Liu-Srivastava Operator, Abstract
and Applied Analysis, 2014, (2014), 1-11, doi: 10.1155/2014/792175.
[21] H. Tang, E. Deniz, Third-order differential subordinations results for an-
alytic functions involving the generalized Bessel functions, Acta Mathe-
matica Scientia, 34, No. 6(2014), 1707-1719.
[22] H. Tang, H. M. Srivastiva, E. Deniz, S. Li, Third-order differential su-
perordination involving the generalized Bessel functions, Bulletin of the
Malaysian Mathematical Sciences Society, 38, No. 4 (2014), 1669-1688,
doi: 10.1007/s40840-014-0108-7.
[23] H. A. Farzana, B. A. Stephen, M. P. Jeyaraman, Third-order differential
subordination of analytic function defined by functional derivative opera-
tor, Annals of the Alexandru Ioan Cuza University-Mathematics, (2014),
1-16, doi: 10.2478/aicu-2014-0028.
82 H.F. Al-Janaby, F. Ghanim, M. Darus
[24] R. W. Ibrahim, M. Z. Ahmad, H. F. Al-Janaby, The Third-Order Differ-
ential Subordination and Superordination involving a fractional operator.
Open Mathematics, 13, No. 1 (2015), 706-728, doi: 10.1515/mat