THE HOSOYA, SCHULTZ AND MODIFIED SCHULTZ POLYNOMIALS OF A CLASS OF DUTCH WINDMILL GRAPH D(m)n, ∀ n,m ∈ N & n ≥ 4, m ≥ 2

TitleTHE HOSOYA, SCHULTZ AND MODIFIED SCHULTZ POLYNOMIALS OF A CLASS OF DUTCH WINDMILL GRAPH D(m)n, ∀ n,m ∈ N & n ≥ 4, m ≥ 2
Publication TypeJournal Article
Year of Publication2018
AuthorsFARAHANI, MOHAMMADREZA, WANG, SHAOHUI, GAO, WEI, WEI, BING, JAMIL, MUHAMMADKAMRAN
Secondary TitleThe Hosoya, Schultz and Modified Schultz polynomials
Volume22
Issue1
Start Page43
Pagination20
Date Published10/2017
Type of Workscientific: mathematics
ISBN Number1083-2564
AMS05C05, 05C12, 05C15, 05C31, 05C69
Abstract

It’s shown by a large number of studies that strong inner bound exists between the chemical characteristics of nano structures and their molecular structures. The material scientists can achieve a better knowledge of their chemical and biological features, if they take the degree-based topological indices on chemical molecular structures into consideration, which will also contribute to making up the shortage of chemical experiments. In this paper, by means of structure analysis and mathematical derivation, the Hosoya, Schultz and modified Schultz polynomials of Dutch windmill graph D (m) n are obtained.

URLhttps://acadsol.eu/en/articles/22/1/4.pdf
DOI10.12732/caa.v22i1.4
Refereed DesignationRefereed
Full Text

REFERENCES

[1] L. Yan, W. Gao, J.S. Li, General harmonic index and general sum connectivity index of polyomino chains and Nanotubes, Journal of Computational and Theoretical Nanoscience, 12, No. 10 (2015), 3940-3944, doi:
10.1166/jctn.2015.4308.
[2] W. Gao, M.K. Siddiqui, M. Imran, M.K. Jamil, M.R. Farahani, Forgotten
topological index of chemical structure in drugs, Saudi Pharmaceutical
Journal, 24 (2016), 258-264, doi: 10.1016/j.jsps.2016.04.012.
[3] W. Gao, M.R. Farahani, L. Shi, Forgotten Topological index of
some drug structures, Acta Medica Mediterranea, 32 (2016), 579-585,
http://www.actamedicamediterranea.com/year.php?y=2016.
[4] W. Gao, W.F. Wang, M.R. Farahani, Topological indices study of molecular
structure in anticancer drugs, Journal of Chemistry (2016), Article
ID 3216327, 8 pages, doi: 10.1155/2016/3216327.
[5] W. Gao, M.R. Farahani, Computing the reverse eccentric connectivity
index for certain family of Nanocones and fullerene structures,
Journal of Nanotechnology (2016), Article ID 3129561, 6 pages, doi:
10.1155/2016/3129561.
[6] W. Gao, M.R. Farahani, Degree-based indices computation for special
chemical molecular structures using edge dividing method, Applied
Mathematics and Nonlinear Sciences, 1, No. 1 2016, 94-117, doi:
10.21042/AMNS.2016.1.00009.
[7] W. Gao, L. Shi, Szeged related indices of unilateral polyomino chain
and unilateral hexagonal chain, IAENG International Journal of Applied
Mathematics, 45, No. 2 (2015), 138-150.
[8] W. Gao, W.F. Wang, The vertex version of weighted wiener number for bicyclic
molecular structures, Computational and Mathematical Methods in
Medicine (2015), Article ID 418106, 10 pages, doi: 10.1155/2015/418106.
[9] W. Gao, W.F. Wang, The eccentric connectivity polynomial of two
classes of nanotubes, Chaos, Solitons & Fractals, 89 2016, 290-294, doi:
10.1016/j.chaos.2015.11.035.
60 M.R. Farahani et al
[10] W. Gao, W.F. Wang, Revised Szeged index and revised edgeSzeged
index of special chemical molecular structures, Journal of
Interdisciplinary Mathematics, 19, No. 3 (2016), 495-516, doi:
10.1080/09720502.2015.1113032.
[11] J.A. Bondy, U.S.R. Murty, Graph Theory, Spring, Berlin, 2008.
[12] S. Klavzar, M. Mollard, Wiener index and Hosoya polynomial of Fibonacci
and Lucas cubes, MATCH Communications in Mathematical and
in Computer Chemistry, 68, No. 1 (2012), 311-324.
[13] E. Deutsch, S. Klavzar, Computing the Hosoya polynomial of graphs
from primary subgraphs, MATCH Communications in Mathematical and
in Computer Chemistry, 70, No. 2 (2013), 627-644.
[14] E. Deutsch, R.V. Emeric, A. Juan, The Hosoya polynomial of distanceregular
graphs, Discrete Applied Mathematics, 178 (2014), 153-156, doi:
10.1016/j.dam.2014.06.018.
[15] M. Dehmer, Y.T. Shi, A. Mowshowitz, Discrimination power of graph
measures based on complex zeros of the partial Hosoya polynomial,
Applied Mathematics and Computation, 250 (2015), 352-355, doi:
10.1016/j.amc.2014.10.048.
[16] M. Eliasi, B. Taeri, Schultz polynomials of composite graphs, Applicable
Analysis and Discrete Mathematics, 2, No. 2 (2008), 285-296, doi:
10.2298/AADM0802285E.
[17] M. Eliasi, B. Taeri, The Schultz polynomial of zigzag polyhex Nanotubes,
Asian Journal of Chemistry, 21, No. 2 (2009), 931-941.
[18] Y. Alizadeh, A. Iranmanesh, S. Mirzaie, Computing Schultz polynomial,
Schultz index of C60 fullerene by GAP program, Digest Journal of Nanomaterials
and Biostructures, 4, No. 1 (2009), 7-10.
[19] M.R. Farahani, M.P. Vlad, On the Schultz, modified Schultz and Hosoya
polynomials and derived indices of Capra-designed planar Benzenoid, Studia
Universitatis Babes-Bolyai Chemia, 57, No. 4 (2012), 55-63.
The Hosoya, Schultz and Modified Schultz polynomials 61
[20] M.R. Farahani, On the Schultz polynomial and Hosoya polynomial of
Circumcoronene series of Benzenoid, Journal of Applied Mathematics and
Informatics, 31, No. 5 (2013), 595-608.
[21] M.R. Farahani, On the Schultz and modified Schultz polynomials of some
Harary graphs, International Journal of Applications of Discrete Mathematics,
1, No. 1 (2013), 1-8.
[22] M.R. Farahani, Hosoya, Schultz, Modified Schultz polynomials and their
topological indices of benzene molecules: First members of polycyclic aromatic
hydrocarbons (PAHs), International Journal of Theoretical Chemistry,
1, No. 2 (2013), 9-16.
[23] M.R. Farahani, Schultz and modified Schultz polynomials of coronene
polycyclic aromatic hydrocarbons, Int. Letters of Chemistry, Physics and
Astronomy, 13, No. 1 (2014), 1-10.
[24] M.R. Farahani, Schultz indices and Schultz polynomials of Harary graph,
Pacific Journal of Applied Mathematics, 6, No. 3 (2014), 77-84.
[25] M.R. Farahani, W. Gao, M.R. Rajesh Kanna, On the Schultz polynomials
and indices of a regular graph Harary H2r+1,2m+1, Journal of Chemical,
Biological and Physical Sciences, 6, No. 1 (2016), 294-301.
[26] M.R. Farahani, W. Gao, M.R. Rajesh Kanna, The Schultz, Modified
Schultz indices and their polynomials of the Jahangir graphs Jn,m for
integer numbers n = 3, m > 2, Asian Journal of Applied Sciences, 3, No.
6 (2015), 823-827.
[27] M.R. Farahani, W. Gao, The Schultz index and Schultz polynomial of the
Jahangir graphs J5,m, Applied Mathematics, 6 (2015), 2319-2325, doi:
10.4236/am.2015.614204.
[28] S. Wang, B. Basavanagoud, S.M. Hosamani, M.R. Farahani, The Schultz
polynomial, modified Schultz polynomial and their indices for the Jahangir
graph J4,m, Pacific Journal of Applied Mathematicsm, 8, No. 3
(2017), 157-165.
62 M.R. Farahani et al
[29] S. Wang, M.R. Farahani, M.R. Rajesh Kanna, P.R. Kumar, Schultz polynomials
and their topological indices of J2,m, Applied Mathematics, 7
(2016), 1632-1637, doi: 10.4236/am.2016.714140.
[30] S. Wang, M.R. Farahani, M.R. Rajesh Kanna, M.K. Jamil, P.R. Kumar,
Wiener index and Hosoya polynomial of Jahangir graphs J5,m, Applied
and Computational Mathematics, 5, No. 3 (2016), 138-141.