REFERENCES

[1] L. Yan, W. Gao, J.S. Li, General harmonic index and general sum connectivity index of polyomino chains and Nanotubes, Journal of Computational and Theoretical Nanoscience, 12, No. 10 (2015), 3940-3944, doi:

10.1166/jctn.2015.4308.

[2] W. Gao, M.K. Siddiqui, M. Imran, M.K. Jamil, M.R. Farahani, Forgotten

topological index of chemical structure in drugs, Saudi Pharmaceutical

Journal, 24 (2016), 258-264, doi: 10.1016/j.jsps.2016.04.012.

[3] W. Gao, M.R. Farahani, L. Shi, Forgotten Topological index of

some drug structures, Acta Medica Mediterranea, 32 (2016), 579-585,

http://www.actamedicamediterranea.com/year.php?y=2016.

[4] W. Gao, W.F. Wang, M.R. Farahani, Topological indices study of molecular

structure in anticancer drugs, Journal of Chemistry (2016), Article

ID 3216327, 8 pages, doi: 10.1155/2016/3216327.

[5] W. Gao, M.R. Farahani, Computing the reverse eccentric connectivity

index for certain family of Nanocones and fullerene structures,

Journal of Nanotechnology (2016), Article ID 3129561, 6 pages, doi:

10.1155/2016/3129561.

[6] W. Gao, M.R. Farahani, Degree-based indices computation for special

chemical molecular structures using edge dividing method, Applied

Mathematics and Nonlinear Sciences, 1, No. 1 2016, 94-117, doi:

10.21042/AMNS.2016.1.00009.

[7] W. Gao, L. Shi, Szeged related indices of unilateral polyomino chain

and unilateral hexagonal chain, IAENG International Journal of Applied

Mathematics, 45, No. 2 (2015), 138-150.

[8] W. Gao, W.F. Wang, The vertex version of weighted wiener number for bicyclic

molecular structures, Computational and Mathematical Methods in

Medicine (2015), Article ID 418106, 10 pages, doi: 10.1155/2015/418106.

[9] W. Gao, W.F. Wang, The eccentric connectivity polynomial of two

classes of nanotubes, Chaos, Solitons & Fractals, 89 2016, 290-294, doi:

10.1016/j.chaos.2015.11.035.

60 M.R. Farahani et al

[10] W. Gao, W.F. Wang, Revised Szeged index and revised edgeSzeged

index of special chemical molecular structures, Journal of

Interdisciplinary Mathematics, 19, No. 3 (2016), 495-516, doi:

10.1080/09720502.2015.1113032.

[11] J.A. Bondy, U.S.R. Murty, Graph Theory, Spring, Berlin, 2008.

[12] S. Klavzar, M. Mollard, Wiener index and Hosoya polynomial of Fibonacci

and Lucas cubes, MATCH Communications in Mathematical and

in Computer Chemistry, 68, No. 1 (2012), 311-324.

[13] E. Deutsch, S. Klavzar, Computing the Hosoya polynomial of graphs

from primary subgraphs, MATCH Communications in Mathematical and

in Computer Chemistry, 70, No. 2 (2013), 627-644.

[14] E. Deutsch, R.V. Emeric, A. Juan, The Hosoya polynomial of distanceregular

graphs, Discrete Applied Mathematics, 178 (2014), 153-156, doi:

10.1016/j.dam.2014.06.018.

[15] M. Dehmer, Y.T. Shi, A. Mowshowitz, Discrimination power of graph

measures based on complex zeros of the partial Hosoya polynomial,

Applied Mathematics and Computation, 250 (2015), 352-355, doi:

10.1016/j.amc.2014.10.048.

[16] M. Eliasi, B. Taeri, Schultz polynomials of composite graphs, Applicable

Analysis and Discrete Mathematics, 2, No. 2 (2008), 285-296, doi:

10.2298/AADM0802285E.

[17] M. Eliasi, B. Taeri, The Schultz polynomial of zigzag polyhex Nanotubes,

Asian Journal of Chemistry, 21, No. 2 (2009), 931-941.

[18] Y. Alizadeh, A. Iranmanesh, S. Mirzaie, Computing Schultz polynomial,

Schultz index of C60 fullerene by GAP program, Digest Journal of Nanomaterials

and Biostructures, 4, No. 1 (2009), 7-10.

[19] M.R. Farahani, M.P. Vlad, On the Schultz, modified Schultz and Hosoya

polynomials and derived indices of Capra-designed planar Benzenoid, Studia

Universitatis Babes-Bolyai Chemia, 57, No. 4 (2012), 55-63.

The Hosoya, Schultz and Modified Schultz polynomials 61

[20] M.R. Farahani, On the Schultz polynomial and Hosoya polynomial of

Circumcoronene series of Benzenoid, Journal of Applied Mathematics and

Informatics, 31, No. 5 (2013), 595-608.

[21] M.R. Farahani, On the Schultz and modified Schultz polynomials of some

Harary graphs, International Journal of Applications of Discrete Mathematics,

1, No. 1 (2013), 1-8.

[22] M.R. Farahani, Hosoya, Schultz, Modified Schultz polynomials and their

topological indices of benzene molecules: First members of polycyclic aromatic

hydrocarbons (PAHs), International Journal of Theoretical Chemistry,

1, No. 2 (2013), 9-16.

[23] M.R. Farahani, Schultz and modified Schultz polynomials of coronene

polycyclic aromatic hydrocarbons, Int. Letters of Chemistry, Physics and

Astronomy, 13, No. 1 (2014), 1-10.

[24] M.R. Farahani, Schultz indices and Schultz polynomials of Harary graph,

Pacific Journal of Applied Mathematics, 6, No. 3 (2014), 77-84.

[25] M.R. Farahani, W. Gao, M.R. Rajesh Kanna, On the Schultz polynomials

and indices of a regular graph Harary H2r+1,2m+1, Journal of Chemical,

Biological and Physical Sciences, 6, No. 1 (2016), 294-301.

[26] M.R. Farahani, W. Gao, M.R. Rajesh Kanna, The Schultz, Modified

Schultz indices and their polynomials of the Jahangir graphs Jn,m for

integer numbers n = 3, m > 2, Asian Journal of Applied Sciences, 3, No.

6 (2015), 823-827.

[27] M.R. Farahani, W. Gao, The Schultz index and Schultz polynomial of the

Jahangir graphs J5,m, Applied Mathematics, 6 (2015), 2319-2325, doi:

10.4236/am.2015.614204.

[28] S. Wang, B. Basavanagoud, S.M. Hosamani, M.R. Farahani, The Schultz

polynomial, modified Schultz polynomial and their indices for the Jahangir

graph J4,m, Pacific Journal of Applied Mathematicsm, 8, No. 3

(2017), 157-165.

62 M.R. Farahani et al

[29] S. Wang, M.R. Farahani, M.R. Rajesh Kanna, P.R. Kumar, Schultz polynomials

and their topological indices of J2,m, Applied Mathematics, 7

(2016), 1632-1637, doi: 10.4236/am.2016.714140.

[30] S. Wang, M.R. Farahani, M.R. Rajesh Kanna, M.K. Jamil, P.R. Kumar,

Wiener index and Hosoya polynomial of Jahangir graphs J5,m, Applied

and Computational Mathematics, 5, No. 3 (2016), 138-141.