QUADRATURE RULES AND ITERATIVE NUMERICAL METHOD FOR TWO-DIMENSIONAL NONLINEAR FREDHOLM FUZZY INTEGRAL EQUATIONS

TitleQUADRATURE RULES AND ITERATIVE NUMERICAL METHOD FOR TWO-DIMENSIONAL NONLINEAR FREDHOLM FUZZY INTEGRAL EQUATIONS
Publication TypeJournal Article
Year of Publication2017
AuthorsENKOV, SVETOSLAV, GEORGIEVA, ATANASKA, PAVLOVA, ALBENA
Secondary TitleCommunications in Applied Analysis
Volume21
Issue3
Start Page479
Pagination30
Date Published06/2017
Type of Workscientific: mathematics
ISSN1083-2564
AMS45B05, 47H10, 65D32
Abstract

In this paper, we introduce some generalized quadrature rules to approximate two-dimensional Henstock integral of fuzzy-number-valued functions by giving error bounds for Henstock integrable, bounded mappings
in terms of uniform modulus of continuity. We also consider generalizations of classical quadrature rules, such as midpoint-type, trapezoidal and three-point-type quadrature. Moreover, we propose an iterative procedure based on trapezoidal quadrature to solve two-dimensional nonlinear Fredholm fuzzy integral equations. The error estimation of the proposed method is given in terms of uniform and partial modulus of continuity. Finally , an illustrative numerical experiment confirms the theoretical results and demonstrates the accuracy of the method.
 

URLhttp://www.acadsol.eu/en/articles/21/3/9.pdf
DOI10.12732/caa.v21i3.9
Short TitleTwo-Dimensional Nonlinear Fredholm Fuzzy Equations
Alternate JournalCAA
Refereed DesignationRefereed
Full Text

REFERENCES

[1] G.A. Anastassiou, S.G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Springer Scince Business Media, LLC, 2000.
[2] G.A. Anastassiou, Fuzzy Mathematics: Approximation Theory, Springer, Berlin, Germany, 2010.
[3] B. Bede, S.G. Gal, Quadrature rules for integrals of fuzzy-number-valued functions, Fuzzy Sets and Systems, 145 (2004), 359-380.
[4] J. Buckley, E. Eslami, T. Feuring, Fuzzy integral equations, In: Fuzzy Mathematics in Economics and Engineering, Studies in Fuzziness and Soft Computing, Springer, Physica-Verlag, Heidelberg, 91 (2002), 229-241.
[5] S.G. Gal, Approximation theory fuzzy setting, In: Handbook of Analytic Computational Methods in Applied Mathematics, (Ed. G.A. Anastassiou), Chapter 13, 617-666, Chapman Hall/CRC, New York, NY, USA, 2000.
[6] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.
[7] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.
[8] S. Sadatrasoul, R. Ezzati, Quadrature rules and iterative method for numerical solution of two-dimensional fuzzy integral equations, Abstract and Applied Analysis (2014), doi: 10.1155/2014/413570.
[9] S. Sadatrasoul, R. Ezzati, Iterative method for numerical solution of two-dimensional nonlinear fuzzy integral equations, Fuzzy Sets and Systems, 280 (2015), 91-106.
[10] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.
[11] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120 (2001), 523-532.