REFERENCES
[1] B. Baer and P. Schmid-Hempel, Sperm influences female hibernation success and fitness in the bumblebee Bombus terrestris, Proc. Biol. Sci., 272 (2005), 319-323.
[2] H.T. Banks, Delay systems in biological models: approximation techniques, Nonlinear Systems and Applications (V. Lakshmikantham, ed.), Academic Press, New York (1977), 21-38.
[3] H.T. Banks, Approximation of nonlinear functional differential equation control systems, J. Optimization Theory Applications, 29 (1979), 383-408.
[4] H.T. Banks, Identification of nonlinear delay systems using spline methods, In Proc. Int. Conf. Nonlinear Phenomena in Math. Sci., June 16-20, 1980, Arlington, Texas, Academic Press, New York (1982), 47-55.
[5] H.T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press, Taylor and Frances Publishing, Boca Raton, FL (2012).
[6] H.T. Banks, J.E. Banks, R. Bommarco, M. Rundlöf, and K. Tillman, Modeling bumblebee population dynamics with delay differential equations, CRSC-TR16-06, N.C. State University, Raleigh, NC, June, 2016.
[7] H.T. Banks, J.E. Banks, Riccardo Bommarco, A.N. Laubmeier, N.J. Myers, Maj Rundlöf, Kristen Tillman, Modeling bumblebee population dynamics with delay differential equations, Ecological Modelling, 351 (2017), 14-23.
[8] H.T. Banks and F. Kappel, Spline approximations for functioanl differential equations, J. Diffferential Equations, 34 (1979), 496-522.
[9] H.T. Banks and P. Daniel Lamm, Estimation of delays with other parameters in nonlinear functional differential equations, LCDS Report #82-2, Dec. 1981; SIAM J. Control & Opt., 21 (1983), 895-915.
[10] H.T. Banks and H.T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL (2009).
[11] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordohoff, Layden, 1976.
[12] I. Bartomeus, et. al., Historical changes in northeastern US bee pollinators related to shared ecological traits, Proc. Natl Acad. Sci. USA, 110 (2013), 4656-4660.
[13] J.C. Biesmeijer, et. al., Parallel declines in pollinators and insectpollinated plants in Britain and the Netherlands, Science, 313 (2006), 351-354.
[14] R. Bommarco, O. Lundin, H.G. Smith, and M. Rundlöf, Drastic historic shifts in bumble-bee community composition in Sweden, Proc. R. Soc. B, 279 (2012), 309-315.
[15] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lec. Notes in Biomath., 20, Springer-Verlag, NY (1977).
[16] J.M. Duchateau, Agonistic behaviors in colonies of the bumblebee Bombus terrestris, J. Ethol. 7 (1989), 141-152.
[17] M.J. Duchateau and H.H.W. Velthuis, Development and Reproductive Strategies in Bombus terrestris Colonies, Behaviour, 107:3 (1988), 186207.
[18] C. Fontaine, I. Dajoz, J. Meriguet, and M. Loreau, Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities,PLoS Biology, 4:1 (2006).
[19] L.A. Garibaldi, et. al., Wild pollinators enhance fruit set of crops regardless of honey-bee abundance, Science, 339 (2013), 1608-1611.
[20] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer, Dordrecht, (1992).
[21] T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics Second Series, 20:4 (1919), 292-296.
[22] J. K. Hale, Ordinary Differential Equations, Wiley, New York (1969), p. 7.
[23] G.E. Hutchinson, Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50 (1948), 221-246.
[24] D. S. Khoury, A. B. Barron, and M. R. Myerscough, Modelling food and population dynamics in honey bee colonies, PLoS ONE 8(5): e59084 (2013), doi:10.1371/journal.pone.0059084.
[25] D. Kleijn et. al., Delivery of crop pollination services is an insufficient argument for wild pollinator conservation, Nature Communications, 6, (2015).
[26] A.M. Klein, B.E. Vaissière. J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. Kremen, and T. Tscharntke, Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London Series B: Biological Sciences, 274 (2007), 303-313.
[27] M. Kot Elements of Mathematical Ecology, Cambridge University Press, Cambridge, U.K., (2001).
[28] P.K. (Daniel) Lamm, Spline-Based Approximation Methods for the Identification and Control of Nonlinear Functional Differential Equations, Brown University, Ph D. Thesis, Providence, RI, 1981.
[29] P.K. Lamm, Spline approximations for nonlinear hereditary control systems, J. Optimization Theory Applications, 44 (1984), 585-624.
[30] J. Ollerton, R. Winfree, and S. Tarrant, How many flowering plants are pollinated by animals?, Oikos 120(3) (2011), 321-326.
[31] J. Peat and D. Goulson, Effects of experience and weather on foraging rate and pollen versus nectar collection in the bumblebee, Bombus terrestris, Behav. Eco. Sociobiol., 58 (2005), 152-156.
[32] S.G. Potts, J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W.E. Kunin, Global pollinator declines: trends, impacts and drivers, Trends Ecol. Evol., 25 (2010), 345-354.
[33] D. Reber, Approximation and Optimal Control of Linear Hereditary Systems, Ph.D. Thesis, Brown University, Providence, R.I., November 1977.
[34] D. Reber, A finite difference technique for solving optimization problems governed by linear functional differential equations, J. Differential Equations, 32 (1979), 193-232.
[35] M. Rundlf, A.S. Persson, H.G. Smith, and R. Bommarco, Late-season mass-flowering red clover increases bumble bee queen and male densities, Biological Conservation, 172 (2014), 138-145.
[36] M.H. Schultz, Spline Analysis, Prentice-Hall, Englewood Cliffs, 1973.
[37] Hal Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, NY, (2011).
[38] H.H.W. Velthius, Development and reproductive strategies in Bombus terrestris colonies, Behaviour, 107 (1988), 186-207.
[39] C. Westphal, I. Steffan-Dewenter, and T. Tscharntke, Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees, Journal of Applied Ecology, 46 (2009), 187-193.
[40] N. W. Williams, J. Regetz, and C. Kremen, Landscape-scale resources promote colony growth but not reproductive performance of bumble bees, Ecology, 93 (2012), 1049-1058.
[41] R. Winfree, I. Bartomeus and D.P. Cariveau, Native pollinators in anthropogenic habitats, Annu. Rev. Ecol. Evol. Syst., 42 (2011), 1-22.