Title | A DIFFERENCE EQUATION WITH DIRICHLET BOUNDARY CONDITIONS |
Publication Type | Journal Article |
Year of Publication | 2017 |
Authors | NEUGEBAUER, JEFFREYT, SEELBACH, CHARLEYL |
Secondary Title | Communications in Applied Analysis |
Volume | 21 |
Issue | 2 |
Start Page | 237 |
Pagination | 12 |
Date Published | 03/2017 |
Type of Work | scientific: mathematics |
ISSN | 1083-2564 |
AMS | 39A10 |
Abstract | A recent Avery et al. fixed point theorem is applied to show the existence of a positive solution of the second order difference equation $$\Delta^{2}u\left(k\right)+f\left(u\left(k\right)\right),\quad k\in\left\{0,1,...,N\right\},$$ with boundary conditions $$u\left(0\right)=u\left(N+2\right)=0.$$ An example is also given. |
URL | http://www.acadsol.eu/en/articles/21/2/5.pdf |
DOI | 10.12732/caa.v21i2.5 |
Short Title | A Difference Equation with Dirichlet Boundary Conditions |
Alternate Journal | ЦАА |
Refereed Designation | Refereed |
Full Text | REFERENCES [1] A. Al Twaty and P. W. Eloe, The role of concavity in applications of Avery type fixed point theorems to higher order differential equations, J. Math Inequal., 6 (2012), 79-90. [2] A. Al Twaty and P. W. Eloe, Concavity of solutions of a 2n-th order problem with symmetry, Opuscula Math., 33 (2013), 603-613. [3] D. R. Anderson and R. I. Avery, Fixed point theorem of a cone expansion and compression of functional type, J. Difference Equ. Appl., 8 (2002), 1073-1083. [4] D. R. Anderson, R. I. Avery and J. Henderson, Functional expansioncompresion fixed point theorem of Leggett-Wiliams type, Electron. J. Differential Equations, 2010 (2010), 1-9. [5] D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Operator type expansion=compression fixed point theorem, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 1-11. A Difference Equation with Dirichlet Boundary Conditions 247 [6] D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Fixed point theorem utilizing operators and functionals, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 1-16. [7] D. R. Anderson, R. I. Avery, J. Henderson, X. Liu and J. W. Lyons, Existence of a positive solution for a right focal discrete boundary value problem, J. Difference Equ. Appl., 17 (2011), 1635-1642. [8] R. I. Avery, A generaliztaion of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-Line, 3 (1999), 9-14. [9] R. I. Avery, P. W. Eloe and J. Henderson, A Leggett-Williams type theorem applied to a fourth order problem, Commun. Appl. Anal., 16 (2012), 579-588. [10] R. I. Avery, P. W. Eloe and J. Henderson, An example employing convexity in functonal fixed point arguments, Comm. App. Nonlinear Anal., 20 (2013), 87-96. [11] R. I. Avery, J. Henderson and D. R. Anderson, A topological proof and extension of the Leggett-Williams fixed point theorem, Comm. App. Nonlinear Anal., 16 (2009), 1-16. [12] R. I. Avery, J. Henderson and D. R. Anderson, Existence of a positive solution to a right focal boundary value problem, Electron J. Qual. Theory Differ. Equ., 2010 (2010), 1-6. [13] R. I. Avery, J. Henderson and D. O’Regan, A dual of the compressionexpansion fixed point theorems, Fixed Point Theory Appl. Article ID 90715 (2007), 1-11. [14] J. Henderson, X. Liu, J. W. Lyons and J. T. Neugebauer, Right focal boundary value prblems for difference equations, Opuscula Math., 30 (2010), 447-456. [15] R. W. Leggett and L. R. Williams, Multiple positive fixed point of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688. 248 J.T. Neugebauer and C.L. Seelbach [16] X. Liu, J. T. Neugebauer and S. Sutherland, Application of a functional ytpe compression expansion fixed point theorem for a right focal boundary value problem on a time scale, Comm. App. Nonlinear Anal., 19 (2012), 25-39. [17] J. W. Lyons and J. T. Neugebauer, Existence of a positive solution for a right focal dynamic boundary value problem, Nonlinear Dyn. Syst. Theory, 14 (2014), 76-83. [18] J. W. Lyons and J. T. Neugebauer, A difference equation with antiperiodic boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 47-60. [19] J. W. Lyons and J. T. Neugebauer, Existence of an antisymmetric solution of a boundary value problem with antiperiodic boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2015 (2015), 1-11. |