A DIFFERENCE EQUATION WITH DIRICHLET BOUNDARY CONDITIONS

TitleA DIFFERENCE EQUATION WITH DIRICHLET BOUNDARY CONDITIONS
Publication TypeJournal Article
Year of Publication2017
AuthorsNEUGEBAUER, JEFFREYT, SEELBACH, CHARLEYL
Secondary TitleCommunications in Applied Analysis
Volume21
Issue2
Start Page237
Pagination12
Date Published03/2017
Type of Workscientific: mathematics
ISSN1083-2564
AMS39A10
Abstract

A recent Avery et al. fixed point theorem is applied to show the existence of a positive solution of the second order difference equation

$$\Delta^{2}u\left(k\right)+f\left(u\left(k\right)\right),\quad k\in\left\{0,1,...,N\right\},$$

with boundary conditions

$$u\left(0\right)=u\left(N+2\right)=0.$$

An example is also given.

URLhttp://www.acadsol.eu/en/articles/21/2/5.pdf
DOI10.12732/caa.v21i2.5
Short TitleA Difference Equation with Dirichlet Boundary Conditions
Alternate JournalЦАА
Refereed DesignationRefereed
Full Text

REFERENCES

[1] A. Al Twaty and P. W. Eloe, The role of concavity in applications of Avery type fixed point theorems to higher order differential equations, J. Math Inequal., 6 (2012), 79-90.   

[2] A. Al Twaty and P. W. Eloe, Concavity of solutions of a 2n-th order problem with symmetry, Opuscula Math., 33 (2013), 603-613.   

[3] D. R. Anderson and R. I. Avery, Fixed point theorem of a cone expansion and compression of functional type, J. Difference Equ. Appl., 8 (2002), 1073-1083.   

[4] D. R. Anderson, R. I. Avery and J. Henderson, Functional expansioncompresion fixed point theorem of Leggett-Wiliams type, Electron. J. Differential Equations, 2010 (2010), 1-9.   

[5] D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Operator type expansion=compression fixed point theorem, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 1-11. A Difference Equation with Dirichlet Boundary Conditions 247   

[6] D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Fixed point theorem utilizing operators and functionals, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 1-16.   

[7] D. R. Anderson, R. I. Avery, J. Henderson, X. Liu and J. W. Lyons, Existence of a positive solution for a right focal discrete boundary value problem, J. Difference Equ. Appl., 17 (2011), 1635-1642.   

[8] R. I. Avery, A generaliztaion of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-Line, 3 (1999), 9-14.   

[9] R. I. Avery, P. W. Eloe and J. Henderson, A Leggett-Williams type theorem applied to a fourth order problem, Commun. Appl. Anal., 16 (2012), 579-588.   

[10] R. I. Avery, P. W. Eloe and J. Henderson, An example employing convexity in functonal fixed point arguments, Comm. App. Nonlinear Anal., 20 (2013), 87-96.   

[11] R. I. Avery, J. Henderson and D. R. Anderson, A topological proof and extension of the Leggett-Williams fixed point theorem, Comm. App. Nonlinear Anal., 16 (2009), 1-16.   

[12] R. I. Avery, J. Henderson and D. R. Anderson, Existence of a positive solution to a right focal boundary value problem, Electron J. Qual. Theory Differ. Equ., 2010 (2010), 1-6.   

[13] R. I. Avery, J. Henderson and D. O’Regan, A dual of the compressionexpansion fixed point theorems, Fixed Point Theory Appl. Article ID 90715 (2007), 1-11.   

[14] J. Henderson, X. Liu, J. W. Lyons and J. T. Neugebauer, Right focal boundary value prblems for difference equations, Opuscula Math., 30 (2010), 447-456.   

[15] R. W. Leggett and L. R. Williams, Multiple positive fixed point of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688. 248 J.T. Neugebauer and C.L. Seelbach   

[16] X. Liu, J. T. Neugebauer and S. Sutherland, Application of a functional ytpe compression expansion fixed point theorem for a right focal boundary value problem on a time scale, Comm. App. Nonlinear Anal., 19 (2012), 25-39.   

[17] J. W. Lyons and J. T. Neugebauer, Existence of a positive solution for a right focal dynamic boundary value problem, Nonlinear Dyn. Syst. Theory, 14 (2014), 76-83.   

[18] J. W. Lyons and J. T. Neugebauer, A difference equation with antiperiodic boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 47-60.   

[19] J. W. Lyons and J. T. Neugebauer, Existence of an antisymmetric solution of a boundary value problem with antiperiodic boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2015 (2015), 1-11.