## REFERENCES

[1] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, 2-nd Edition, World Scientific Series on Nonlinear Science Series A Inc., 1995.

[2] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory Of Impulsive Differential Equations, Series in Modern Applied Mathematics, Volume 6, World Scientific, 1989.

[3] J.R. Kirkwood, An Introduction to Analysis, 2-nd Edition, PWS Publishing Company and Waveland Press Inc., 1995.

[4] R.C. Merton, Lifetime portfolio selection under uncertainty: The continuoustime case, The Review of Economics and Statistics, 51, No. 3 (1969), 247-257.

[5] Alain Bensoussan, Perturbation Method in Optima Control, Wiley, 1988.

[6] Purves, W.K. Sadava, D. Orians, G.H. Heller, Life: The science of biology, 7-th Edition, W.H. Freeman Inc., 2003.

[7] H. Shim, N.H. Jo, H. Chang, J.H. Seo, A system theoretic study on a treatment of AIDS patient by achieving long-term non-progressor, Automatica (2009), 611-62.

[8] D. Wodarz, M.A. Nowak, Specific therapy regimes could lead to long-term immunological control of HIV, Proceedings of the National Academy Sciences, 96, No. 25 (1999, 14464-14469.

[9] D. Wodarz, Helper-dependent vs. helper-independent CTL responses in HIV infection: Implications for drug therapy and resistance, Journal of Theoretical Biology, 213 (2001), 447-459.

[10] H. Shim, S.J. Han, C.C. Chung, S.W. Nam, J.H. Seo, Optimal scheduling of drug treatment for HIV infection: Continuous dose control and receding horizon control, International Journal of Control, Automation, and Systems (IJCAS), 1, No. 3 (2003), 401-407.

[11] R. Zurakowski, Exploiting Immune Response Dynamics in HIV Therapy, Ph.D. Thesis, Univ. of California, Santa Barbara, 2004.

[12] R. Zurakowski, A.R. Teel, A model predictive control based scheduling method for HIV therapy, Journal of Theoretical Biology, 238 (2006), 368-382.

[13] H.T. Banks, H.D. Kwon, J.A. Toivanen, H.T. Tran, A state-dependent Riccati equation-based estimator approach for HIV feedback control, Optimal Control Applications and Methods, 27, No. 2 (2006), 93-121.

[14] R.F. Stengel, R. Ghigliazza, N. Kulkarni, O. Laplace, Optimal control of innate immune response, Optimal Control Applications and Methods, 23 (2002), 91-104.

[15] H. Chang, A. Astolfi, Control of HIV infection dynamics, IEEE Control System Magazine, 28, No. 2 (2008), 28-39.

[16] A.M. Jeffrey, X. Xia, I.K. Craig, When to initiate HIV therapy: A control theoretic approach, IEEE Transactions on Biomedical Engineering, 50, No. 11 (2003), 1213-1220.

[17] X. Xia, Estimation of HIV/AIDS parameter, Automatica, 39, No. 11 (2003), 1983-1988.

[18] X. Xia, C.H. Moog, Identifiability on nonlinear systems with application to HIV/AIDS models, IEEE Transactions on Automatic Control, 48, No. 2 (2003), 330-336.

[19] H. Chang, A. Astol and H. Shim, Control of infection dynamics with application to HIV/AIDS model, In: Joint 48-th IEEE Conference on Decision and Control and 28-th Chinese Control Conference, ThA11.6 (2009).

[20] Qilin Sun and Lequan Min1, Dynamics analysis and simulation of a modified HIV infection model with a saturated infection rate, Computational and Mathematical Methods in Medicine, 2014 , Article ID 145162 (2014).

[21] Xinzhi Liu, Ynqun Liu, Kok Lay Teo, Stability analysis of impulsive control systems, Mathematical and Computer Modelling, 37, Issues 12-13 (2003), 1357- 1370.

[22] S.H. Hou and K.H. Wong, Optimal impulsive control problem with application to human immunodeficiency virus treatment, Journal of Optimization Theory and Applications, 151, No. 2 (2011), 385-401.

[23] M.A. Nowak, R.M. May, Virus Dynamics, Oxford University Press Inc., 2000.

[24] De P. Leenheer, H.L. Smith, Virus dynamics: A global analysis, SIAM Journal on Applied Mathematics, 63, No. 4 (2003), 1313-1327.

[25] L. Wang, M.Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Mathematical Biosciences, 200 (2006), 44-57.

[26] Leonard D. Berkovitz, Negash G. Medhin, Nonlinear Optimal Control Theory, CRC Press, 2013.

[27] Donald E. Kirk, Optimal Control Theory. An Introduction, Prentice-Hall, Inc, 1970.

[28] Lawrence Perko, Differential Equation and Dynamical Systems, Springer, Third Edition, 2001.

[29] Tinang Liang Guo, The necessary conditions of fractional optimal control in the sense of Caputo, J. Optimal Theory Appl, 156 (2013), 115-126.

[30] C. Chevallereau, A. Formalsky, B. Perrin, Low energy cost reference trajectories for a biped robot, robotics and automation, In: Proceedings of the IEEE International Conference, 2 (1998), 1398-1404.

[31] E.G. Gilbert, G.A. Harsty, A class of fixed-time fuel optimal impulsive control problems and an efficient algorithm for their solution, IEEE Trans. Autom. Control, AC-16, 1971.

[32] J.C. Luo, E.B. Lee, Time-optimal control of the swing using impulsive control actions, In: Proceedings of American Control Conference (1998), 200-204.

[33] T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer, Berlin, 2001.s, Springer, Third Edition, 2001.

[29] Tinang Liang Guo, The necessary conditions of fractional optimal control in the sense of Caputo, J. Optimal Theory Appl, 156 (2013), 115-126.

[30] C. Chevallereau, A. Formalsky, B. Perrin, Low energy cost reference trajectories for a biped robot, robotics and automation, In: Proceedings of the IEEE International Conference, 2 (1998), 1398-1404.

[31] E.G. Gilbert, G.A. Harsty, A class of fixed-time fuel optimal impulsive control problems and an efficient algorithm for their solution, IEEE Trans. Autom. Control, AC-16, 1971.

[32] J.C. Luo, E.B. Lee, Time-optimal control of the swing using impulsive control actions, In: Proceedings of American Control Conference (1998), 200-204.

[33] T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer, Berlin, 2001.