COMPLETE SYMMETRIC FUNCTIONS AND k-FIBONACCI NUMBERS

TitleCOMPLETE SYMMETRIC FUNCTIONS AND k-FIBONACCI NUMBERS
Publication TypeJournal Article
Year of Publication2016
AuthorsBOUSSAYOUD, ALI, HARROUCHE, NESRINE
Secondary TitleCommunications in Applied Analysis
Volume20
Issue4
Start Page457
Pagination10
Date Published10/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS05E05, 11B39
Abstract

In this paper, we introduce a operator in order to derive some new symmetric properties of k-Fibonacci numbers and Tchebychev polynomials of second kind. By making use of the operator defined in this paper, we give some new generating functions for k- Fibonacci numbers and Tchebychev polynomials of second kinds.

URLhttp://www.acadsol.eu/en/articles/20/4/1.pdf
DOI10.12732/caa.v20i4.1
Short TitleComplete Symmetric Functions and k-Fibonacci Numbers
Alternate JournalCAA
Refereed DesignationRefereed
Full Text

REFERENCES

[1] S. Araci, Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus, Appl. Math. Comput. 233 (2014), 599-607.
[2] A. Boussayoud, M. Boulyer, M. Kerada, A simple and accurate method for determination of some generalized sequence of numbers, Int. J. Pure Appl. Math., 108 (2016), 503-511.
[3] A. Boussayoud, A. Abderrezzak, M. Kerada, Some applications of symmetric functions, Integers., 15, No. A#48 (2015), 1-7.
[4] A. Boussayoud, M. Kerada, R. Sahali, W. Rouibah, Some applications on generating functions, J. Concr. Appl. Math., 12 (2014), 321-330.
[5] A. Boussayoud, M. Kerada, A. Abderrezzak, A generalization of some orthogonal polynomials, Springer Proc. Math. Stat., 41 (2013), 229-235.
[6] A.T. Benjamin, J.J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America, Washington, DC, 2003.
[7] S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos, Sulutions & Fractals, 32 (2007), 1615-1624.
[8] S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Sulutions & Fractals, 33 (2008), 38-49.
[9] S. Falcon, A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Sulutions & Fractals, 39 (2009), 1005-1019.
[10] V.E. Hoggat, Fibonacci and Lucas Numbers, Palo Alto, CA: Houghton-Mifflin, 1969.
[11] M. Merca, A Generalization of the symmetry between complete and elementary symmetric functions, Indian J. Pure Appl. Math., 45 (2014), 75-89.
[12] L. Shapiro, A combinatorial proof of a Chebyshev polynomial identity, Discrete Math., 34 (1981), 203-206.
[13] V.W. Spinadel, Themetallic means family and forbidden symmetries, Int. Math. J., 2 (2002), 279-288.
[14] R.P. Stanley, Enumerative Combinatorics, Volume 1, Cambridge University Press, 2002.