NEGATIVE DEFINITE FUNCTIONS ON DIRECT PRODUCT OF COMMUTATIVE HYPERCOMPLEX SYSTEMS

TitleNEGATIVE DEFINITE FUNCTIONS ON DIRECT PRODUCT OF COMMUTATIVE HYPERCOMPLEX SYSTEMS
Publication TypeJournal Article
Year of Publication2016
AuthorsGHANY, HOSSAMA, HYDER, ABD-ALLAH, ZAKARYA, M
Secondary TitleCommunications in Applied Analysis
Volume20
Issue3
Start Page397
Pagination14
Date Published10/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS43A10, 43A22, 43A62
Abstract

The main aim of this paper is to explore harmonic properties of functions defined in the product of hypercomplex systems. By means of the generalized translation operators, the precise definition of the product of commutative hypercomplex systems is given and full description for its properties are shown. The definition and some properties of negative definite functions in the product of commutative normal hypercomplex systems are given.

URLhttp://www.acadsol.eu/en/articles/20/3/10.pdf
DOI10.12732/caa.v20i3.10
Short TitleNegative Definite Functions of Commutative Hypercomplex Systems
Alternate JournalCAA
Refereed DesignationRefereed
Full Text

REFERENCES

[1] Yu. M. Berezansky and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex
Systems, Naukova Dumka, Kyiv: Ukrania, 1992.
[2] A. M. Zabel and B. A. Bin Dehaish, Negative definite functions on hypercomplex
systems, KYUNGPOOK Math. Journal 46 (2006), 285-295.
[3] A. M. Zabel and B. A. Bin Dehaish, L´evy Khinchin formula on commutative
hypercomplex system, KYUNGPOOK Math. Journal, 48 (2008), 559-575.
[4] B. A. Bin Dehaish, Exponentially convex functions on hypercomplex systems,
International Journal of Mathematics and Mathematical Sciences, 2011 (2011),
1-11.
[5] A. S. Okb El Bab, A. M. Zabel, H. A. Ghany, Harmonic analysis in hypercomplex
systems, International Journal of Pure and Applied Mathematics, 80 (2012), 739-
750.
[6] A. S. Okb El Bab, H. A. Ghany and R. M. Boshnaa, The moment problem in
hypercomplex systems, Journal of Advances in Mathematics, 10 (2015), 3654-
3663.
[7] A. Hyder and M. Zakarya, Non-Gaussian Wick calculus based on hypercomplex
systems, International Journal of Pure and Applied Mathematics, 109 No. 3
(2016), 539-556.
[8] A. S. Okb El Bab, H. A. Ghany and M. Zakarya, A construction of non-Gaussian
white noise analysis using the theory of hypercomplex systems, Global Journal
of Science Frontier Research: F Mathematics and Decision Sciences, 16 (2016),
11-25.
[9] J. Delsarte, Sur certaines transformation fonctionelles relative aux equations
linearies aux derivees partiels du seconde ordre, C. R. Acad. Sci., Ser. A, 17
(1938), 178-182.
[10] B. M. Levitan, Generalization of translation operation and infinite-dimensional
hypercomplex systems, Mat. Sb. I, 16 (1945), No. 3, 259-280; II 17 (1945), No.
1, 9-44; III 17 (1945), No. 2, 163-192, In Russian.
[11] B. M. Levitan, Application of generalized translation operators to linear differential
equations of the second order, Usp. Mat. Nauk, 4 (1949), 3-112, In Russian.
[12] B. M. Levitan, Lie theorems for generalized translation operators, Usp. Mat.
Nauk, 16 (1961), 3-30, In Russian.
[13] B. M. Levitan, Generalized Translation Operators and Some Their Applications,
Nauka, Moscow, 1962; English Translation: Israel Program for Scientific Translations,
1964.
[14] B. M. Levitan, Theory of generalized translation operators, Nauka, Moscow, 1973,
In Russian.
[15] G. L. Litvinov, On generalized translation operators and their representations,
Tr. Sem. Vekt. Anal. MGU, 18 (1978), 345-371, In Russian.
[16] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups,
Springer-Verlage, Berlin-Heidelberg-New York, 1980.
[17] W. R. Bloom and P. Ressel, Positive definite and related functions on hypergroups,
Canad. J. Math., 43 (1991), 242-254.
[18] C. Berg, J. P. R. Christensen, P. Ressel, Harmonic Analysis on Semigroups:
Theory of Positive Definite and Related Functions, Springer-Verlag, BerlinHeidelberg-New
York, 1984.
[19] Yu. M. Berezansky and S. G. Krein, Hypercomplex systems with a compact
basis, Ukrainski Matematicheski Zhurnal, 3 (1951), 184-204.
[20] G. K. Pederson, C

-Algebra and their Automorphism Groups, London Mathematical
Society Monograph, Academic Press, London-New York, 1979.
[21] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups,
Springer-Verlag, Berlin-Heidelberg, 1975.