FINITE-TIME STOCHASTIC SYNCHRONIZATION FOR A CLASS OF BAM NEURAL NETWORKS WITH UNCERTAIN PARAMETERS

TitleFINITE-TIME STOCHASTIC SYNCHRONIZATION FOR A CLASS OF BAM NEURAL NETWORKS WITH UNCERTAIN PARAMETERS
Publication TypeJournal Article
Year of Publication2016
AuthorsCHEN, ZHENGWEI, ZHANG, RUOJUN, WANG, LINSHAN
Secondary TitleCommunications in Applied Analysis
Volume20
Issue2
Start Page263
Pagination14
Date Published06/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS74H65, 93E35
Abstract

This paper is concerned with the finite-time stochastic synchronization for a class of bidirectional associative memory (BAM) neural networks with uncertain parameters. With the adaptive control method, sufficient conditions for finite-time stochastic synchronization and parameters identification are derived based on finite-time stability theory of stochastic differential equations. We also provide a numerical example to support the effectiveness of the proposed method.

URLhttp://www.acadsol.eu/en/articles/20/2/7.pdf
DOI10.12732/caa.v20i2.7
Short TitleSTOCHASTIC SYNCHRONIZATION FOR BAMNN
Refereed DesignationRefereed
Full Text

REFERENCES

[1] B. Kosko, Adaptive bidirectional associative memories,Appl.Opt. 26(32)(1987), 4947–4960.
[2] J. T. Qi, C. D. Li and T. W. Huang, Stability of inertial BAM neural network with time-varying
delay via impulsive control, Neurocomputing 161(2015), 162–167.
[3] B. W. Liu, Global exponential stability for BAM neural networks with time-varying delays in
the leakage terms, Nonlinear Anal. Real World Appl 14(2013), 559–566.
[4] H. B. Bao and J. D. Cao, Exponential stability for stochastic BAM networks with discrete
and distributed delays, Appl. Math. Comput 218(2012), 6188–6199.
[5] K. Ratnavelu, M. Manikandan and P. Balasubramaniam, Synchronization of fuzzy bidirectional
associative memory neural networks with various time delays, Appl. Math. Comput 270(2015),
582–605.
[6] X. D. Li and S. J. Song, Research on synchronization of chaotic delayed neural networks with
stochastic perturbation using impulsive control method, Commun. Nonlinear. Sci. Numer.
Simulat 19(2014) 3892– 3900.
[7] K. Mathiyalagan, J. H. Park and R.Sakthivel, Synchronization for delayed memristive BAM
neural networks using impulsive control with random nonlinearities, Appl. Math. Comput
259(2015) 967–979.
[8] X. S. Yang and Z. C. Yang, Synchronization of TS fuzzy complex dynamical networks with
time-varying impulsive delays and stochastic effects, Fuzzy Sets Syst 235(2014) 25–43.
[9] W. L. He, J and D. Cao, Adaptive synchronization of a class of chaotic neural networks with
known or unknown parameters, Phys. Lett. A 372(4)(2008) 408–416.
[10] X. L. Li and J. D. Cao, Adaptive synchronization for delayed neural networks with a stochastic
perturbation, J. Frankl. Inst 345(7)(2008) 779–791.
[11] C. Hu, J. Yu and H.J.Jiang, Finite-time synchronization of delayed neural networks with
Cohen-Grossberg type based on delayed feedback control, Neurocomputing 143(2014) 90–96.
[12] X. J. Gao and H. P. Hu, Adaptive-impulsive synchronization and parameter estimation of
chaotic systems with unknown parameters bu using discontinuous drive signals, Appl. Math.
Model 39(2015) 3980–3989.
[13] H. L. Li, Y. L. Jiang, Z. L. Wang, L. Zhang and Z.D.Chen. Parameter identification and
adaptive- impulsive synchronization of uncertain complex networks with nonidentical topological
structures, Optik 126(2015) 5771–5776.
[14] L. D. Zhao, J. B. Hu, J.A.Fang etc. Adaptive synchronization and parameter identification of
chaotic system with unknown parameters and mixed delays based on a special matrix structure,
ISA Tran 52(2013) 738–743.
[15] J. Mei, M. H. Jiang, B. Wang and B.long. Finite-time parameter identification and adaptive
synchronization between two chaotic neural networks, J. Frankl. Inst 350(2013),1617–1633.
[16] T. B. Wang, S. W. Zhao, W. N. Zhou and W. Q. Yu, Finite-time master-slave synchronization
and parameter identification for Lurie system, ISA Tran 53(2014) 1184–1190.
[17] T. W. Huang, C. D. Li, S. K. Duan and J.A.Starzyk, Robust exponential stability of uncertain
delayed neural networks with stochastic perturbation and impulse effects, IEEE Trans. Neural.
Netw. Learning. Syst 23(2012) 866–875.
[18] X. Y. Lou, Q. Ye and B. T. Cui, Parameter-dependent robust stability of uncertain neural
networks with time-varying delay, J. Frankl. Inst 349(2012) 1891–1903.
[19] S. B. Ding and Z. S. Wang, Stochastic exponential synchronization control of memristive neural
networks with multiple time -varying delays, Neurocomputing 162(2015) 16–25.
[20] G.X.Qi, H. B. Huang, C. K. Shen, H. J. Wang and L. Chen, Predicting the synchronization
time in coupled-map networks, Phys.Rev.E 77,056205(2008).
[21] Y. Kim and M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent
graph laplacian, IEEE Trans. Autom. Control 51(1)(2006) 116–120.
[22] Y. Z. Sun, W. Li and D. H. Zhao, Finite-time stochastic outer synchronization between two
complex dynamical networks with different topologies, Chaos 22, 023152(2012).
[23] R. Anbuvithyaa, K. Mathiyalaganb, R. Sakthivelc,d and P.Prakasha, Non-fragile synchronization
of memristive BAM networks with random feedback gain fluctuations [J]. Commun.
Nonlinear. Sci. Numer. Simulat 29(2015) 427–440.
[24] J. D. Cao and Y. Wan, Matrix measure strategies for stability and synchronization of inertial
BAM neural network with time delays [J]. Neural Networks 53(2014) 165–172.
[25] G. Hardy, J. Littlewood and G.Polya, Inequalities, Cambridge University Press, Cambridge,
1952.
[26] X. Y. Liu, N. Jiang, J. D. Cao,etc, Finite-time stochastic stabilization for BAM neural networks
with uncertainties,J. Frankl. Inst 350(2013) 2109–2123.
[27] W. S. Chen and L. C. Jiao, Authors reply to Comments onFinite-time stability theorem of
stochastic nonlinear systems [Automatica 46(2010) 2105-2108], Automatica 47(2011) 1544–
1545.
[28] M. Chen, W. Chen, Robust adaptive neural network synchronization controller design for a
class of time delay uncertain chaotic systems,Chaos Solitons Fract 41(2009) 2716–2724.