## REFERENCES

[1] B. Kosko, Adaptive bidirectional associative memories,Appl.Opt. 26(32)(1987), 4947–4960.

[2] J. T. Qi, C. D. Li and T. W. Huang, Stability of inertial BAM neural network with time-varying

delay via impulsive control, Neurocomputing 161(2015), 162–167.

[3] B. W. Liu, Global exponential stability for BAM neural networks with time-varying delays in

the leakage terms, Nonlinear Anal. Real World Appl 14(2013), 559–566.

[4] H. B. Bao and J. D. Cao, Exponential stability for stochastic BAM networks with discrete

and distributed delays, Appl. Math. Comput 218(2012), 6188–6199.

[5] K. Ratnavelu, M. Manikandan and P. Balasubramaniam, Synchronization of fuzzy bidirectional

associative memory neural networks with various time delays, Appl. Math. Comput 270(2015),

582–605.

[6] X. D. Li and S. J. Song, Research on synchronization of chaotic delayed neural networks with

stochastic perturbation using impulsive control method, Commun. Nonlinear. Sci. Numer.

Simulat 19(2014) 3892– 3900.

[7] K. Mathiyalagan, J. H. Park and R.Sakthivel, Synchronization for delayed memristive BAM

neural networks using impulsive control with random nonlinearities, Appl. Math. Comput

259(2015) 967–979.

[8] X. S. Yang and Z. C. Yang, Synchronization of TS fuzzy complex dynamical networks with

time-varying impulsive delays and stochastic effects, Fuzzy Sets Syst 235(2014) 25–43.

[9] W. L. He, J and D. Cao, Adaptive synchronization of a class of chaotic neural networks with

known or unknown parameters, Phys. Lett. A 372(4)(2008) 408–416.

[10] X. L. Li and J. D. Cao, Adaptive synchronization for delayed neural networks with a stochastic

perturbation, J. Frankl. Inst 345(7)(2008) 779–791.

[11] C. Hu, J. Yu and H.J.Jiang, Finite-time synchronization of delayed neural networks with

Cohen-Grossberg type based on delayed feedback control, Neurocomputing 143(2014) 90–96.

[12] X. J. Gao and H. P. Hu, Adaptive-impulsive synchronization and parameter estimation of

chaotic systems with unknown parameters bu using discontinuous drive signals, Appl. Math.

Model 39(2015) 3980–3989.

[13] H. L. Li, Y. L. Jiang, Z. L. Wang, L. Zhang and Z.D.Chen. Parameter identification and

adaptive- impulsive synchronization of uncertain complex networks with nonidentical topological

structures, Optik 126(2015) 5771–5776.

[14] L. D. Zhao, J. B. Hu, J.A.Fang etc. Adaptive synchronization and parameter identification of

chaotic system with unknown parameters and mixed delays based on a special matrix structure,

ISA Tran 52(2013) 738–743.

[15] J. Mei, M. H. Jiang, B. Wang and B.long. Finite-time parameter identification and adaptive

synchronization between two chaotic neural networks, J. Frankl. Inst 350(2013),1617–1633.

[16] T. B. Wang, S. W. Zhao, W. N. Zhou and W. Q. Yu, Finite-time master-slave synchronization

and parameter identification for Lurie system, ISA Tran 53(2014) 1184–1190.

[17] T. W. Huang, C. D. Li, S. K. Duan and J.A.Starzyk, Robust exponential stability of uncertain

delayed neural networks with stochastic perturbation and impulse effects, IEEE Trans. Neural.

Netw. Learning. Syst 23(2012) 866–875.

[18] X. Y. Lou, Q. Ye and B. T. Cui, Parameter-dependent robust stability of uncertain neural

networks with time-varying delay, J. Frankl. Inst 349(2012) 1891–1903.

[19] S. B. Ding and Z. S. Wang, Stochastic exponential synchronization control of memristive neural

networks with multiple time -varying delays, Neurocomputing 162(2015) 16–25.

[20] G.X.Qi, H. B. Huang, C. K. Shen, H. J. Wang and L. Chen, Predicting the synchronization

time in coupled-map networks, Phys.Rev.E 77,056205(2008).

[21] Y. Kim and M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent

graph laplacian, IEEE Trans. Autom. Control 51(1)(2006) 116–120.

[22] Y. Z. Sun, W. Li and D. H. Zhao, Finite-time stochastic outer synchronization between two

complex dynamical networks with different topologies, Chaos 22, 023152(2012).

[23] R. Anbuvithyaa, K. Mathiyalaganb, R. Sakthivelc,d and P.Prakasha, Non-fragile synchronization

of memristive BAM networks with random feedback gain fluctuations [J]. Commun.

Nonlinear. Sci. Numer. Simulat 29(2015) 427–440.

[24] J. D. Cao and Y. Wan, Matrix measure strategies for stability and synchronization of inertial

BAM neural network with time delays [J]. Neural Networks 53(2014) 165–172.

[25] G. Hardy, J. Littlewood and G.Polya, Inequalities, Cambridge University Press, Cambridge,

1952.

[26] X. Y. Liu, N. Jiang, J. D. Cao,etc, Finite-time stochastic stabilization for BAM neural networks

with uncertainties,J. Frankl. Inst 350(2013) 2109–2123.

[27] W. S. Chen and L. C. Jiao, Authors reply to Comments onFinite-time stability theorem of

stochastic nonlinear systems [Automatica 46(2010) 2105-2108], Automatica 47(2011) 1544–

1545.

[28] M. Chen, W. Chen, Robust adaptive neural network synchronization controller design for a

class of time delay uncertain chaotic systems,Chaos Solitons Fract 41(2009) 2716–2724.