NONTRIVIAL SOLUTIONS FOR A FRACTIONAL SCHRODINGER EQUATION VIA CRITICAL POINT THEORY

TitleNONTRIVIAL SOLUTIONS FOR A FRACTIONAL SCHRODINGER EQUATION VIA CRITICAL POINT THEORY
Publication TypeJournal Article
Year of Publication2016
AuthorsXU, JIAFA, DONG, WEI, O’REGAN, DONAL
Secondary TitleCommunications in Applied Analysis
Volume20
Issue2
Start Page253
Pagination10
Date Published06/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS35A15, 35R11
Abstract

In this paper we discuss a time-independent fractional Schr¨odinger equation (−∆)su + V (x)u = f(x, u) + g(x) in R N , where N ≥ 2, s ∈ (0, 1) and (−∆)s stands for the fractional Laplacian. Using the Mountain Pass Theorem, we establish two existence theorems to ensure that the above problem has at least one nontrivial solution.

URLhttp://www.acadsol.eu/en/articles/20/2/6.pdf
DOI10.12732/caa.v20i2.6
Short TitleSOLUTIONS FOR A FRACTIONAL SCHRODINGER EQUATION
Refereed DesignationRefereed
Full Text

REFERENCES

[1] X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional Laplacian
with general nonlinearity, Nonlinearity, 26 (2013) 479-494.
[2] X. Chang, Ground state solutions of asymptotically linear fractional Schr¨odinger equations, J.
Math. Phys. 54, 061504 (2013).
[3] Y. Wei, X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional
Laplacian, Calc. Var. 52 (2015) 95-124.
[4] Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian
systems, Math. Methods Appl. Sci. 37 (2014) 1873-1883.
[5] S. Secchi, Ground state solutions for nonlinear fractional Schr¨odinger equations in R
N , J.
Math. Phys. 54, 031501 (2013).
262 J. XU, W. DONG, AND D. O’REGAN
[6] X. Cabr´e, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum
principles, and Hamiltonian estimates, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 31 (2014)
23-53.
[7] Y. Hua, X. Yu, On the ground state solution for a critical fractional Laplacian equation,
Nonlinear Anal. 87 (2013) 116-125.
[8] B. Barrios, E. Colorado, A. de Pablo, U. S´anchez, On some critical problems for the fractional
Laplacian operator, J. Differential Equations 252 (2012) 6133-6162.
[9] G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in R
N , J. Differential
Equations 255 (2013) 2340-2362.
[10] S. Dipierro, A. Pinamonti, A geometric inequality and a symmetry result for elliptic systems
involving the fractional Laplacian, J. Differential Equations 255 (2013) 85-119.
[11] K. Teng, Multiple solutions for a class of fractional Schr¨odinger equations in R
N , Nonlinear
Anal. Real World Appl. 21 (2015) 76-86.
[12] T. Gou, H. Sun, Solutions of nonlinear Schr¨odinger equation with fractional Laplacian without
the Ambrosetti-Rabinowitz condition, Appl. Math. Comput. 257 (2015) 409-416.
[13] J. Xu, Z. Wei, W. Dong, Existence of weak solutions for a fractional Schr¨odinger equation,
Commun. Nonlinear Sci. Numer. Simul. 22 (2015) 1215-1222.
[14] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and
Hamiltonian Systems, 3rd ed., Springer-Verlag, New York, 2000.
[15] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theorey and applications,
J. Funct. Anal. 14 (1973) 349-381.
[16] M. Willem, Minimax Theorems, Birkh¨aser, Boston, 1996.
[17] Y. Ye, C. Tang, Multiple solutions for Kirchhoff-type equations in R
N , J. Math. Phys. 54,
081508 (2013).
[18] L. Duan, L. Huang, Infinitely many solutions for sublinear Schr¨odinger-Kirchhoff-Type equations
with general potentials, Results. Math. 66 (2014) 181-197.