B-SPLINE CURVE AS A MINIMUM OF QUADRATIC FORM AND ITS DERIVATIVES, I

TitleB-SPLINE CURVE AS A MINIMUM OF QUADRATIC FORM AND ITS DERIVATIVES, I
Publication TypeJournal Article
Year of Publication2016
AuthorsNENOV, SVETOSLAVI
Secondary TitleCommunications in Applied Analysis
Volume20
Issue2
Start Page239
Pagination13
Date Published06/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS41A15, 65D07, 65Dxx
Abstract

The goal of this short note is to show a new approach for differentiation of b-spline curve.

URLhttp://www.acadsol.eu/en/articles/20/2/5.pdf
DOI10.12732/caa.v20i2.5
Short TitleB-SPLINE CURVES AND DERIVATIVES
Refereed DesignationRefereed
Full Text

REFERENCES

[1] Gary D. Knott, Interpolating Cubic Splines, Springer Science & Business Media (2000), 244 pages.
[2] N.M. Patrikalakis, T. Maekawa, W. Cho, http://web.mit.edu/hyperbook/PatrikalakisMaekawa-Cho/ 
[3] E.T.Y. Lee, A simplified b-spline computation routine, Computing, Springer-Verlag, 29, No. 4 (1982), 365371, doi: 10.1007/BF02246763.
[4] E.T.Y. Lee, Comments on some b-spline algorithms, Computing, Springer-Verlag, 36, No. 3 (1986), 229238, doi: 10.1007/BF02240069.
[5] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, Claudio T. Silva, Point-Set Surfaces, http://www.math.tau.ac.il/ levin/
[6] D. Levin, The approximation power of mooving least-squares, http://www.math.tau.ac.il/ levin/
[7] D. Levin, Mesh-independent surface interpolation, http://www.math.tau.ac.il/ levin/
[8] D. Levin, Stable integration rules with scattered integration points, Journal of Computational and Applied Mathematics, 112 (1999), 181-187, http://www.math.tau.ac.il/ levin/
[9] Maple 2015 Hepl System, http://www.maplesoft.com/ 
[10] Dicho Stratiev, Ivaylo Marinov, Rosen Dinkov, Ivelina Shishkova, Ilian Velkov, Ilshat Sharafutdinov, Svetoslav Nenov, Tsvetelin Tsvetkov, Sotir Sotirov, Magdalena Mitkova, Nikolay Rudnev, Opportunity to improve diesel-fuel cetane-number prediction from easily available physical properties and application of the least-squares method and artificial neural networks, Energy & Fuels, 29, No. 3 (2015).
[11] Arne Laksøa, Børre Bang, Lubomir T. Dechevsky, Geometric modelling with beta-function bsplines, I: Parametric curves, International Journal of Pure and Applied Mathematics, 65, No. 3 (2010), 339-360.
[12] Arne Laksøa, Børre Bang, Lubomir T. Dechevsky, Geometric modelling with beta-function b-splines, II: Tensor-product parametric surfaces, International Journal of Pure and Applied Mathematics, 65, No. 3 (2010), 361-380.