## REFERENCES

[1] R. P. Agarwal and D. O’Regan, An infinite interval problem arising in circularly symmetric

deformations of shallow membrane caps, Internat. J. Non-Linear Mech. 39 (2004), 779-784.

[2] R. P. Agarwal and D. O’Regan, Boundary value problems of nonsingular type of the semiinfinite

interval, Tohoku Math. J. 51 (1999), 391-397.

[3] R .P. Agarwal and D. O’Regan, Boundary value problems on the half line in the theory of

colloids, Math. Probl. Eng. 8 (2002), 143-150.

[4] R. P. Agarwal and D. O’Regan, Infinite interval problem arising in non-linear mechanics and

non-Newtonian fluid flows, Internat. J. Non-Linear Mech. 38 (2003), 1369-1376.

[5] R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differential, Difference and

integral equations, Kluwer Academic Publishers, Dordrecht, 2001.

[6] R. P. Agarwal and D. O’Regan, Infinite Interval problems modeling phenomena which arise in

the theory of plasma and electrical potential theory, Stud. Appl. Math.111 (2003), 339-358.

[7] P. Amster and A. Deboli, A Neumann boundary value problem on an unbounded interval,

Electron. J. Differential Equations 90 (2008), 1-5.

[8] I. Bachir and H. Mˆaagli, existence and uniqueness for superlinear second-order differential

equations on the half-line, Electron. J. Differential Equations 08 (2015), 1-14.

[9] J. V. Baxley, Existence and uniqueness for nonlinear boundary value problems on infinite

intervals, J. Math. Anal. Appl. 147 (1990), 122-133.

[10] F. A. Berezin and M. A. Shubin, The Schr¨odinger Equation, Kluwer Academic Publishers,

Dordrecht, 1991

[11] H. Brezis, Semilinear Equations in R

N without condition at infinity, Appl. Math. Optim. 12

(1984), 271-282.

[12] M. Derhab, Existence of minimal and maximal solutions for a quasilinear elliptic equation with

integral boundary value conditions, Electron. J. Qual. Theory. Differ. Equ. 6 ( 2011), 1-18.

[13] S. Djebali and S. Zahar, Bounded solutions for a derivative dependent boundary value problem

on the half-line, Dynam. Systems Appl. 19 (2010), 545-556.

[14] P. W. Eloe, The quasilinearization method on an unbounded domain, Proc. Amer. Math. Soc.

131 (2002), 1481-1488.

[15] P. W. Eloe, L. J. Grimm and J. Mashburn, A boundary value problem on an unbounded

domain, Differential Equations and Dynamical Systems 8 (2000), 125-140.

[16] P. W. Eloe, E. R. Kaufmann and C. C. Tisdell, Multiple solutions of a boundary value problem

on an unbounded domain, Dynam. Systems Appl. 15 (2006), 53-64.

[17] L. Erbe and K. Schmitt, On radial solutions of some semilinear elliptic equations, Differential

and Integral Equations 1 (1988), 71-78.

[18] M. Frigon and D. O’Regan, Existence theory of compact and noncompact intervals, Comm.

Appl. Nonlinear Anal. 2 (1995), 75-82.

[19] J. Graham-Eagle, Monotone methods for semilinear elliptic equations in unbounded domains,

J. Math. Anal. Appl. 137 (1989), 122-131.

[20] A. Granas, R. B. Guenther, J. W. Lee and D. O’regan, Boundary value problems on infinite

intervals and semiconductor devices, J. Math. Anal. Appl. 116 (1986), 335-348.

[21] O. A. Gross, The boundary value problem on an infinite interval: existence, uniqueness, and

asymptotic behavior of bounded solutions to a class of nonlinear second order differential

equations, J. Math. Anal. Appl. 7 (1963), 100-109.

[22] J. Jeong, C. H. Kim and E. K. Lee, Solvability for nonlocal boundary value problems on a half

line with dim(Ker L)= 2, Bound. Value Probl. 2014 (2014), 11 pages.

[23] N. Kawano, E. Yanagida, and S. Yotsutani, Structure theorems for positive radial solutions to

div

|Du|

m−2 Du

+ K (|x|) u

q = 0 in R

n, J. Math. Soc. Japan 45 (1993), 719-742.

[24] R. E. Kidder, Unsteady flow of gas through a semi-infinite porous medium, J. Appl. Mech. 24

(1957), 329-332.

[25] G. S. Ladde, V. Lakshmikantham and A. S. Vatsla, Monotone Iterative Techniques for Nonlinear

Differential Equations, Pitman Publishing Co., Boston, 1985.

[26] C. G. Kim, Solvability of multi-point boundary value problems on the half-line, J. Nonlinear

Sci. Appl. 5 (2012), 27-33.

[27] I. Kuzin and S. Pokhozhaev, Entire Solutions of Semilinear Elliptic Equations, Birkh¨auser,

Basel, 1997.

[28] G. I. Laptev, Existence of solutions of certain quasilinear elliptic equations in R

n without

conditions at infinity, Journal of Mathematical Sciences 150 (2008), 2384-2394.

[29] B. Liu, L. Liu and Y. Wu, Multiple solutions of singular three-point boundary value problems

on [0, +∞), Nonlinear Anal. 70 (2009), 3348-3357.

[30] B. Liu, L. Liu and Y. Wu, Unbounded solutions for three-point boundary value problems with

nonlinear boundary conditions on [0, +∞), Nonlinear Anal. 73 (2010), 2923-2932.

[31] Y. Liu, Monotone iteration method for differential equations involving integral boundary conditions

on the half line, Appl. Anal. 92 (2013), 72-95.

[32] E. I. Moiseev and G. O. Vafodorova, On the uniqueness of the solution of the first two boundary

value problems for the heat equation without initial conditions, Differ. Uravn. 46 (2010), 1465–

1471.

[33] F. H. Murray, On certain linear differential equations of the second order, Ann. of Math.24

(1922), 69-88.

[34] T. Y. Na, Computational Methods in Engineering Boundary Value Problems, Academic Press,

New York, 1979.

[35] Z. Nehari, On a nonlinear differential equation arising in nuclear physics, Proc. Roy. Irish.

Acad. 62 (1961-1963), 117-135.

[36] E. S. Noussair, On semilinear elliptic boundary value problems in unbounded domains, J.

Differential Equations 41 (1981), 482-495.

[37] E. S. Noussair, On the existence of solutions of nonlinear elliptic boundary value problems, J.

Differential Equations 34 (1979), 334-348.

[38] A. Ogata, On bounded positive solutions of nonlinear elliptic boundary value problems in an

exterior domains, Funkcial. Ekvac. 17 (1974), 207-222.

[39] D. O’Regan and R. Precup, Positive solutions of nonlinear systems with p-Laplacian on finite

and semi-infinite intervals, Positivity 11 (2007), 537-548.

[40] C. V. Pao, Nonlinear elliptic boundary value problems in unbounded domains, Nonlinear Anal.

18 (1992), 759-774.

[41] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992.

[42] R. Sta´nczy, Bounded solutions for nonlinear elliptic equations in unbounded domains, J. Appl.

Anal. 6 (2000), 129-138.

[43] A. Varma and N. R. Amundson, Maximal and minimal solutions, effectiveness factors for

chemical reaction in porous catalysts. Chem. Eng. Sci. 28 (1973), 91-104.

[44] V. Volpert, Elliptic Partial Differential Equations. Volume 1: Fredholm Theory of Elliptic

Problems in Unbounded domains, Birkh¨auser, Basel, 2011.

[45] V. Volpert, Elliptic Partial Differential Equations. Volume 2: Reaction-Diffusion Equations,

Birkh¨auser, Basel, 2014.

[46] P. K. Wong, Existence and asymptotic behavior of proper solutions of class of second-order

nonlinear differential equations, Pacific J. Math. 13 (1963), 737-760.

[47] A. Yang and W. Ge, Positive solutions for second-order boundary value problem with integral

boundary conditions at resonance on a half-line, Journal of inequalities in pure and applied

mathematics, 10 (2009), 10 pages.

[48] F. Yoruk and N. A. Hamal, Existence results for nonlinear boundary value problems with

integral boundary conditions on an infinite interval, Bound. Value Probl. 2012 (2012), 17

pages.

[49] T. Yoshizawa, Note on the non-increasing solutions of y

′′ = f (x, y, y′

), Mem. College Sci.

Univ. Kyoto Ser. A Math. 27 (1952), 152-163.