REFERENCES
[1] P.N. Agarwal, V. Gupta, A.S. Kumar, On q-analogue of Bernstein-Schurer-Stancu operators, Appl. Math. Comput. 219 14 (2013), 7754-7764.
[2] P.N. Agarwal, A.S. Kumar, T.A.K. Sinha, Stancu type generalization of modified Schurer operators based on q-integers, Appl. Math. Comput., 226 (2014), 765-776.
[3] P.N. Agarwal, Zolt´an Finta, A Satish Kumar, Bernstein-Schurer-Kantorovich operators based on q-integers, Appl. Math. Comput., 256 (2015), 222-231.
[4] A. Aral, Generalization of Sz´asz-Mirakyan operators based on q-integers, Math. Comput. Modelling, 49 (9-10) (2008), 1052-1062.
[5] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
[6] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[7] H. Gauchman, Integral inequalities in q-calculs, Comput. Math. Appl., 47 (2004), 281-300.
[8] F.H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
[9] A. Lupa¸s, A q-analogue of the Bernstein operator, Rocky Mountain J. Math. 36 5 (2006), 1615-1629.REFERENCES
[1] P.N. Agarwal, V. Gupta, A.S. Kumar, On q-analogue of Bernstein-Schurer-Stancu operators, Appl. Math. Comput. 219 14 (2013), 7754-7764.
[2] P.N. Agarwal, A.S. Kumar, T.A.K. Sinha, Stancu type generalization of modified Schurer operators based on q-integers, Appl. Math. Comput., 226 (2014), 765-776.
[3] P.N. Agarwal, Zolt´an Finta, A Satish Kumar, Bernstein-Schurer-Kantorovich operators based on q-integers, Appl. Math. Comput., 256 (2015), 222-231.
[4] A. Aral, Generalization of Sz´asz-Mirakyan operators based on q-integers, Math. Comput. Modelling, 49 (9-10) (2008), 1052-1062.
[5] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
[6] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[7] H. Gauchman, Integral inequalities in q-calculs, Comput. Math. Appl., 47 (2004), 281-300.
[8] F.H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
[9] A. Lupa¸s, A q-analogue of the Bernstein operator, Rocky Mountain J. Math. 36 5 (2006), 1615-1629.
[10] S. Marinkovi´c, P. Rajkovi´c, M. Stankovi´c, The inequalities for some types of q-integrals, Comput. Math. Appl., 56 (2008), 2490-2498.
[11] C.V. Muraru, Note on q-Bernstein-Schurer operators, Studia Univ. Babe¸s-Bolyai, Mathematica, 56 2 (2011), 489-495.
[12] M. Mursaleen, Asif Khan, H.M. Srivastava, K.S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput., 219 (2013), 6911-6918.
[13] M. Mursaleen, Asif Khan, Generalized q-Bernstein-Schurer operators and some approximation theorems, J. Funct. Spaces, (2013), Article ID 719834, 7 pages.
[14] M. Mursaleen, Asif Khan, Statistical approximation properties of modified q-Stancu-Beta operators, Bull. Malays. Math. Sci. Soc.(2), 36 3 (2013), 683-690.
[15] M. Mursaleen, Faisal Khan, Asif Khan, Approximation properties for modified q-BernsteinKantorovich operators, Numer. Funct. Anal. Optim., 36 9 (2015), 1178-1197.
[16] M. Mursaleen, Faisal Khan, Asif Khan, Approximation properties for King’s type modified q-Bernstein-Kantorovich operators, Math. Meth. Appl. Sci., 38 2015, 5242-5252.
[17] M. Orkc¨u, O. Do˘gru, Statistical approximaion of a kind of Kan ¨ torovich type q-Sz´asz-Mirakjan operators, Nonlinear Anal., 75 5 (2012), 2874-2882.
[18] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 2 (2003), 232-255.
[19] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), 511-518.
[20] M. Ren, X.M. Zeng, King type modification of q-Bernstein-Schurer operators, Czechoslovak Math. J., 63 138 (2013), 805-817.
[10] S. Marinkovi´c, P. Rajkovi´c, M. Stankovi´c, The inequalities for some types of q-integrals, Comput. Math. Appl., 56 (2008), 2490-2498.
[11] C.V. Muraru, Note on q-Bernstein-Schurer operators, Studia Univ. Babe¸s-Bolyai, Mathematica, 56 2 (2011), 489-495.
[12] M. Mursaleen, Asif Khan, H.M. Srivastava, K.S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput., 219 (2013), 6911-6918.
[13] M. Mursaleen, Asif Khan, Generalized q-Bernstein-Schurer operators and some approximation theorems, J. Funct. Spaces, (2013), Article ID 719834, 7 pages.
[14] M. Mursaleen, Asif Khan, Statistical approximation properties of modified q-Stancu-Beta operators, Bull. Malays. Math. Sci. Soc.(2), 36 3 (2013), 683-690.
[15] M. Mursaleen, Faisal Khan, Asif Khan, Approximation properties for modified q-BernsteinKantorovich operators, Numer. Funct. Anal. Optim., 36 9 (2015), 1178-1197.
[16] M. Mursaleen, Faisal Khan, Asif Khan, Approximation properties for King’s type modified q-Bernstein-Kantorovich operators, Math. Meth. Appl. Sci., 38 2015, 5242-5252.
[17] M. Orkc¨u, O. Do˘gru, Statistical approximaion of a kind of Kan ¨ torovich type q-Sz´asz-Mirakjan operators, Nonlinear Anal., 75 5 (2012), 2874-2882.
[18] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 2 (2003), 232-255.
[19] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), 511-518.
[20] M. Ren, X.M. Zeng, King type modification of q-Bernstein-Schurer operators, Czechoslovak Math. J., 63 138 (2013), 805-817.