ON FUZZY FRACTIONAL ORDER DERIVATIVES AND DARBOUX PROBLEM FOR IMPLICIT DIFFERENTIAL EQUATIONS

TitleON FUZZY FRACTIONAL ORDER DERIVATIVES AND DARBOUX PROBLEM FOR IMPLICIT DIFFERENTIAL EQUATIONS
Publication TypeJournal Article
Year of Publication2016
AuthorsBENCHOHRA, MOUFFAK, BOUKENKOUL, ABDERRAHMANE
Secondary TitleCommunications in Applied Analysis
Volume20
Issue1
Start Page65
Pagination12
Date Published02/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS34K
Abstract

In this paper, the Banach contraction principle and a fixed point theorem for absolute retract spaces are used to investigate the existence of fuzzy solutions for Caputo fractional implicit differential equations.

URLhttp://www.acadsol.eu/en/articles/20/1/6.pdf
DOI10.12732/caa.v20i1.6
Short TitleFIRST ORDER NEUTRAL IMPULSIVE DIFFERENTIAL EQUATIONS
Alternate JournalCAA
Refereed DesignationRefereed
Full Text

REFERENCES

[1] S. Abbas, M. Benchohra, and G. M. N’Gu´er´ekata, Topics in Fractional Differential Equations,
Springer, New York, 2012.
[2] S. Abbas, M. Benchohra, and G. M. N’Gu´er´ekata, Advanced Fractional Differential and Integral
Equations, Nova Science Publishers, New York, 2015.
[3] S. Abbas, M. Benchohra, and A.N. Vityuk, On fractional order derivatives and Darboux problem
for implicit differential equations, Fract. Calc. Appl. Anal. 15 (2012), 168–182.
[4] T. Allahviranloo, S. Abbasbandy, M. R. Balooch Shahryari, S. Salahshour, and D. Baleanu,
Algebraic solutions of fractional differential equations with uncertainty, to appear.
[5] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional
differential equations with uncertainty, Nonlinear Anal. 72 (2010), 2859–2862.
[6] R.P. Agarwal, M. Benchohra, D. O’Regan, and A. Ouahab, Fuzzy solutions for multipoint
boundary value problems, Mem. Differential Equations Math. Phys. 35 (2005), 1–14.
[7] S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear
Anal. 74 (2011), 3685–3693.
[8] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical
Methods, World Scientific Publishing, New York, 2012.
[9] J. Dugundji and A. Granas, Fixed Point Theory, Springer-Verlag, New-York 2003.
[10] L. Gaul, P. Klein, and S. Kempfle, Damping description involving fractional operators, Mech.
Syst. Signal Process 5 (1991), 81–88.
[11] W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of self-semilar protin
Dynomics, Bio-physics J. 68 (1995), 46–53.
[12] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore 2000.
[13] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands,
1991.
[14] O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems 24
(1990), 389–396.
[15] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, North-Holland Mathematics Studies, 2006.
[16] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of Fractional Dynamic Systems,
Cambridge Scientific Publishers, Cambridge, 2009.
[17] K. B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation
and Integration to An Arbitrary Order. Academic Press, New York–London, 1974.
[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[19] M. Puri and D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 409–422.
[20] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory
and Applications, Gordon and Breach, Yverdon, 1993.
[21] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles,
Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
[22] A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential
equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318–325.