NEW OSCILLATION CRITERIA FOR FOURTH ORDER NEUTRAL DYNAMIC EQUATIONS

TitleNEW OSCILLATION CRITERIA FOR FOURTH ORDER NEUTRAL DYNAMIC EQUATIONS
Publication TypeJournal Article
Year of Publication2016
AuthorsTRIPATHY, AK
Secondary TitleCommunications in Applied Analysis
Volume20
Issue1
Start Page13
Pagination12
Date Published01/2016
Type of Workscientific: mathematics
ISSN1083-2564
AMS34A10, 34K11, 39A99
Abstract

In this paper, the oscillation of a class of fourth order nonlinear neutral functional dynamic equations of the form

$$ \left(r(t)  (y(t) + p(t)y(\alpha(t)))^{\Delta^2}\right)^{\Delta^2} + q(t)f(y(\beta(t))) = 0 $$

is studied on an arbitrary time scale $T$, under the assumption
$$
\int\limits_{t_0}^{\infty} \frac{t}{r(t)} \Delta t = \infty, \quad t_0 > 0,
$$
for various ranges of $p(t)$.

URLhttp://www.acadsol.eu/en/articles/20/1/2.pdf
DOI10.12732/caa.v20i1.2
Short TitleFOURTH ORDER NEUTRAL DYNAMIC EQUATIONS
Alternate JournalCAA
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. P. Agarwal, M. Bohner, D. O’Regan, A. Peterson, Dynamic equations on time scales : A
survey, J. Compu. Appl. Math. 141, (2002), 1–26.
[2] R. P. Agarwal, D. O’Regan, S. H. Saker, Oscillation criteria for second order nonlinear neutral
delay dynamic equations, J. Math. Anal. Appl. 300(2004), 203–217.
[3] E. Boe, H. C. Chang, Dynamics of delayed systems under feedback control, Chem. Eng. Sci.
44(1989), 1281–1294.
[4] M. Bohner, A. Peterson, Dynamic equations on Time scales : An Introduction with Applications,
Birkh¨auser, Boston, 2001.
[5] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time scales : Birkh¨auser, Boston,
2003.
[6] R. D. Driver, A mixed neutral systems, Nonlinear Analysis; Theory Methods and Applications
(1984), 155–158.
[7] S. R. Grace, M. Bohner, S. Sun; Oscillation of fourth order dynamic equations, Hacet. J. Math.
Stat. 39(2010), 454–453.
[8] S. R. Grace, J. R. Graef; Oscillation criteria for fourth order nonlinear neutral delay dynamic
equations on time scales,Global J. Pure. Appl. Math., 7(2011), 439–447.
[9] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[10] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus,
Results in Mathematics, 18, No. (1-2) (1990), 18-56. (2)(2006), 123–141.
[11] V. Kac, P. Cheung, Quantum calculus, Universitent, Springer - Verlag, New York (2002).
[12] T. Li, E. Thandapani, S. Tang; Oscillation theorems for fourth order delay dynamic equations
on time scales,Bull. Math. Anal. Appl., 3(2011), 190–199.
[13] S. Panigrahi, P. R. Reddy; On oscillatory fourth order nonlinear neutral delay dynamic equations,Comp.
Math. Appl., 62(2011), 4258–4271.
[14] N. Parhi, A. K. Tripathy; On oscillatory fourth order nonlinear neutral differential equationsII,
Math. Slovaca, 55(2005), 183–202.
[15] E. P. Popov; Automatic regulation and Control, Nauka Mascow (in Russian), 1966.
[16] Y. Sahiner, I. P. Stavroulakis; Oscillations of first order delay dynamic equations, Dyn. Syst.
Appl., 15(2006), 645–656.
[17] A. K. Tripathy; Oscillation of fourth-order nonlinear neutral difference equations-I, Math.
Slovaca, 58(2008), 221–240.
[18] A. K. Tripathy, Some oscillation results for second order nonlinear dynamic equations of neutral
type, Nonlinear Analysis: Theory, Methods and Applications, 71(2009), e1727–e1735.
[19] A. K. Tripathy, T. Gnana Bhaskar, Oscillation results for second order neutral delay dynamic
equations, J. Functional Differential Equations, (3-4) (2010), 329–344.
[20] C. Zhang; Oscillation results for fourth order nonlinear dynamic equations, Appl. Math. Lett.,
25(2012), 2058–2065.