**REFERENCES**

[1] Z. Agur, L. Cojocaru, G. Mazaur, R.M. Anderson and Y.L. Danon, Pulse mass measles vaccination

across age cohorts, Proc. Nat. Acad. Sci. USA. 90 (1993), 11698–11702.

[2] C. S. Barroso, Krasnosel’skii’s fixed point theorem for weakly continuous maps, Nonlinear Anal. 55 (2003), 25–31.

[3] D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood Ltd., Chichister, 1989.

[4] C. S. Barroso and E. V. Teixeira, A topological and geometric approach to fixed points results

for sum of operators and applications, Nonlinear Anal. 60 (2005), 625–650.

[5] M. Benchohra, J. Henderson, and S. K. Ntouyas, Impulsive Differential Equations and Enclusions

Contemporary Mathematics and its Applications, 2. Hindawi Publishing Corporation, New York, 2006.

[6] M. Boriceanu, Krasnosel’skii-type theorems for multivalued operators, Fixed Point Theory 9 (2008), 35–45.

[7] T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998), 23–31.

[8] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes

in Mathematics, Springer-Verlag, Vol. 580, Berlin-Heidelberg-New York, 1977.

[9] R. Cristescu, Order Structures in Normed Vector Spaces, Editura S¸tiint¸ific˘a ¸si Enciclopedic˘a,

Bucure¸sti, 1983 (in Romanian).

[10] S. Djebali, L. Gorniewicz and A. Ouahab, Solutions Sets for Differential Equations and Inclusions,

De Gruyter Series in Nonlinear Analysis and Applications 18. Berlin: de Gruyter, 2013.

[11] J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr. 12

(2010), 1726–1757.

[12] J. Garcia-Falset, K. Latrach, E. Moreno-G´alvez and M. A Taoudi, Schaefer-Krasnosel’skii fixed

point theorems using a usual measure of weak noncompactness, J. Differential Equations 252

(2012), 3436–3452.

[13] J. Garcia-Falset and O. Mu˜niz-P´erez, Fixed point theory for 1-set weakly contractive and

pseudocontractive mappings, Appl. Math. Comput. 219 (2013), 6843–6855.

[14] J. R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point

Approach, De Gruyter Series in Nonlinear Analysis and Applications 20, Berlin: de Gruyter,

2013.

[15] L. G´orniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its

Applications, Kluwer Academic Publishers, 495, Dordrecht, 1999.

[16] L. G´orniewicz and A. Ouahab, Some fixed point theorems of a Krasnosel’skii type and application

to differential inclusions, Fixed Point Theory, to appear.

[17] A. Halanay and D. Wexler, Teoria Calitativa a Systeme cu Impulduri, Editura Republicii

Socialiste Romania, Bucharest, 1968.

[18] J. Henderson and A. Ouahab, Some multivalued fixed point theorems in topological vector

spaces, Journal of Fixed Point Theory, to appear.

[19] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer,

Dordrecht, 1997.

[20] M. A. Krasnosel’skii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl. Ser. (2)

10 (1958), 345–409.

[21] E. Kruger-Thiemr, Formal theory of drug dosage regiments, J. Theoret. Biol. 13 (1966), 212–

235.

[22] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations,

World Scientific, Singapore, 1989.

[23] Y. Liu and Z. Li, Krasnosel’skii-type fixed point theorems, Proc. Amer. Math. Soc., 136

(2008), 1213–1220.

[24] V. D. Milman and A. A. Myshkis, On the stability of motion in the presence of impulses, Sib.

Math. J. (in Russian) 1 (1960) 233–237.

[25] A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen.

Met. Reshen. Differ. Uvavn., 2, (1964), 115–134 (in Russian).

[26] I. R. Petre, A multivalued version of Krasnosel’skii’s theorem in generalized Banach spaces,

An. S¸t. Univ. Ovidius Constant¸a, 22 (2014), 177–192.

[27] A. I. Perov, A. V. Kibenko, On a certain general method for investigation of boundary value

problems, Izv. Akad. Nauk SSSR, Ser. Mat., 30 1966, 249–264 (in Russian).

[28] I. R. Petre and A. Petru¸sel, Krasnosel’skii’s theorem in generalized Banach spaces and applications,

Electron. J. Qual. Theory Differ. Equ. (2012), no. 85, 20 pp.

[29] I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances,

Fixed Point Theory 9 (2008), 541–559.

[30] R. S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27,

Springer-Verlag, Berlin, 2000.

[31] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific,

Singapore, 1995.

[32] T. Xiang and R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear

Anal. 71 (2009), 3229–3239.