REFERENCES
[1] Z. Agur, L. Cojocaru, G. Mazaur, R.M. Anderson and Y.L. Danon, Pulse mass measles vaccination
across age cohorts, Proc. Nat. Acad. Sci. USA. 90 (1993), 11698–11702.
[2] C. S. Barroso, Krasnosel’skii’s fixed point theorem for weakly continuous maps, Nonlinear Anal. 55 (2003), 25–31.
[3] D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood Ltd., Chichister, 1989.
[4] C. S. Barroso and E. V. Teixeira, A topological and geometric approach to fixed points results
for sum of operators and applications, Nonlinear Anal. 60 (2005), 625–650.
[5] M. Benchohra, J. Henderson, and S. K. Ntouyas, Impulsive Differential Equations and Enclusions
Contemporary Mathematics and its Applications, 2. Hindawi Publishing Corporation, New York, 2006.
[6] M. Boriceanu, Krasnosel’skii-type theorems for multivalued operators, Fixed Point Theory 9 (2008), 35–45.
[7] T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998), 23–31.
[8] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes
in Mathematics, Springer-Verlag, Vol. 580, Berlin-Heidelberg-New York, 1977.
[9] R. Cristescu, Order Structures in Normed Vector Spaces, Editura S¸tiint¸ific˘a ¸si Enciclopedic˘a,
Bucure¸sti, 1983 (in Romanian).
[10] S. Djebali, L. Gorniewicz and A. Ouahab, Solutions Sets for Differential Equations and Inclusions,
De Gruyter Series in Nonlinear Analysis and Applications 18. Berlin: de Gruyter, 2013.
[11] J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr. 12
(2010), 1726–1757.
[12] J. Garcia-Falset, K. Latrach, E. Moreno-G´alvez and M. A Taoudi, Schaefer-Krasnosel’skii fixed
point theorems using a usual measure of weak noncompactness, J. Differential Equations 252
(2012), 3436–3452.
[13] J. Garcia-Falset and O. Mu˜niz-P´erez, Fixed point theory for 1-set weakly contractive and
pseudocontractive mappings, Appl. Math. Comput. 219 (2013), 6843–6855.
[14] J. R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point
Approach, De Gruyter Series in Nonlinear Analysis and Applications 20, Berlin: de Gruyter,
2013.
[15] L. G´orniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its
Applications, Kluwer Academic Publishers, 495, Dordrecht, 1999.
[16] L. G´orniewicz and A. Ouahab, Some fixed point theorems of a Krasnosel’skii type and application
to differential inclusions, Fixed Point Theory, to appear.
[17] A. Halanay and D. Wexler, Teoria Calitativa a Systeme cu Impulduri, Editura Republicii
Socialiste Romania, Bucharest, 1968.
[18] J. Henderson and A. Ouahab, Some multivalued fixed point theorems in topological vector
spaces, Journal of Fixed Point Theory, to appear.
[19] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer,
Dordrecht, 1997.
[20] M. A. Krasnosel’skii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl. Ser. (2)
10 (1958), 345–409.
[21] E. Kruger-Thiemr, Formal theory of drug dosage regiments, J. Theoret. Biol. 13 (1966), 212–
235.
[22] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations,
World Scientific, Singapore, 1989.
[23] Y. Liu and Z. Li, Krasnosel’skii-type fixed point theorems, Proc. Amer. Math. Soc., 136
(2008), 1213–1220.
[24] V. D. Milman and A. A. Myshkis, On the stability of motion in the presence of impulses, Sib.
Math. J. (in Russian) 1 (1960) 233–237.
[25] A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen.
Met. Reshen. Differ. Uvavn., 2, (1964), 115–134 (in Russian).
[26] I. R. Petre, A multivalued version of Krasnosel’skii’s theorem in generalized Banach spaces,
An. S¸t. Univ. Ovidius Constant¸a, 22 (2014), 177–192.
[27] A. I. Perov, A. V. Kibenko, On a certain general method for investigation of boundary value
problems, Izv. Akad. Nauk SSSR, Ser. Mat., 30 1966, 249–264 (in Russian).
[28] I. R. Petre and A. Petru¸sel, Krasnosel’skii’s theorem in generalized Banach spaces and applications,
Electron. J. Qual. Theory Differ. Equ. (2012), no. 85, 20 pp.
[29] I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances,
Fixed Point Theory 9 (2008), 541–559.
[30] R. S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27,
Springer-Verlag, Berlin, 2000.
[31] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific,
Singapore, 1995.
[32] T. Xiang and R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear
Anal. 71 (2009), 3229–3239.