REFERENCES
[1] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equation,
Canadian Appl. Math. Quart. 13 (2005), 1–17.
[2] R. P. Agarwal, D. O’Regan and S. H. Saker, Philos- type oscillation criteria for second order
half linear dynamic equations, Rocky Mountain J. Math. 37 (2007), 1085–1104.
[3] E. F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1961.
[4] M. Bohner and T. S. Hassan, Oscillation and boundedness of solutions to first and second order
forced functional dynamic equations with mixed nonlinearities, Appl. Anal. Discrete Math. 3 (2009), 242–252.
[5] M. Bohner, L Erbe and A. Peterson, Oscillation for nonlinear second order dynamic equations
on a time scale, J. Math. Anal. Appl. 301 (2005), 491–507.
[6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
[7] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales,
Birkhauser, Boston, 2003.
[8] D. Chen, Oscillation and asymptotic behavior of solutions of certain third-order nonlinear
delay dynamic equations, Theoretical Mathematics & Applications 3 (2013), 19–33.
[9] E. M. Elabbasy and T. S. Hassan, Oscillation criteria for third order functional dynamic
equations, Electron. J. Differential Equations 2010 (2010), 1–14.
[10] L. Erbe, J. Baoguo and A. Peterson, Oscillation of nth-order superlinear dynamic equations
on time scales, Rocky Mountain J. Math. 41 (2011), 471–491.
[11] L. Erbe and T. S. Hassan, New oscillation criteria for second order sublinear dynamic equations,
Dynam. Syst. Appl. 22 (2013), 49–64.
[12] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay
dynamic equations on time scales, Nonlinear Dynam. Sys. Th. 9 (2009), 51–68.
[13] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear
delay dynamic equations on time scales, Int. J. Difference Equ. 3 (2008), 227–245.
[14] L. Erbe, A. Peterson and S. H. Saker, Hille-Kneser-type criteria for second-order dynamic
equations on time scales, Adv. Diff. Eq. 2006 (2006), 1–18.
[15] L. Erbe, A. Peterson and S. H. Saker, Hille and Nehari type criteria for third order dynamic
equations, J. Math. Anal. Appl. 329 (2007), 112–131.
[16] L. Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order
nonlinear dynamic equation on time scales, J. Comp. Appl. Math. 181 (2005), 92–102.
[17] L. Erbe, A. Peterson and S. H. Saker, Oscillation and asymptotic behavior of a third-order
nonlinear dynamic equation, Canad. Appl. Math. Quarterly 14 (2006), 129–147.
[18] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of third order nonlinear functional dynamic
equations on time scales, Differ. Equ. Dyn. Syst. 18 (2010), 199–227.
[19] L. Erbe, T. S. Hassan and A. Peterson, Oscillation criteria for nonlinear damped dynamic
equations on time scales, Appl. Math. Comput. 203 (2008), 343–357.
[20] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of second order functional dynamic equations,
Int. J. Difference Equ. 5 (2010), 1–19.
[21] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of third order functional dynamic equations
with mixed arguments on time scales, J. Appl. Math Comput. 34 (2010), 353–371.
[22] L. Erbe, B. Karapuz and A. Peterson, Kamenev-type oscillation criteria for higher order neutral
delay dynamic equations, Int. J. Differ. Equ. Appl. 6 (2011), 1–16.
[23] L. Erbe, R. Mert, A. Peterson and A. Zafer, Oscillation of even order nonlinear delay dynamic
equations on time scales, Czech. Math. J. 63 (2013), 265–279.
[24] M. Gera, J. R. Graef, M. Gregus, On oscillatory and asymptotic properties of solutions of
certain nonlinear third order differential equations, Nonlinear Anal. 32 (1998) 417–425, 49– 56.
[25] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second order strongly
superlinear and strongly sublinear dynamic equations, Commun. Nonlin. Sci. Numer. Simul.
14 (2009), 3463–3471.
[26] S. R. Grace, R. P. Agarwal and A. Zafer, Oscillation of higher order nonlinear dynamic equations
on time scale, Adv. Differ. Equ. 2012, 2012:67.
[27] S. R. Grace, J. Graef, S. Panigrahi and E. Tunc, On the oscillatory behavior of even order
neutral delay dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 2012
(2012), 1–12.
[28] S. R. Grace and T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations,
Math. Nachr. (2014)/DOI 10.1002/mana.201300157, 1–15.
[29] S. R. Grace, On the oscillation of nth-order dynamic equations on time scale, Mediterr. J.
Math. 10 (2013), 147–156.
[30] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press,
Cambridge, 1988.
[31] Z. Han, T. Li, S. Sun and M. Zhang, Oscillation behavior of solutions of third-order nonlinear
delay dynamic equations on time scales, Commun. Korean Math. Soc. 26 (2011), 499–513.
[32] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales,
Math. Comput. Modelling 49 (2009), 1573–1586.
[33] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math.
Anal. Appl. 345 (2008), 176–185.
[34] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations
on time scales, Appl. Math. Comput. 217 (2011), 5285–5297.
[35] T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential
equations with mixed nonlinearities, Acta Math. Sci. 31B (2011), 613–626.
[36] T. S. Hassan and Q. Kong, Oscillation criteria for second order nonlinear dynamic equations
with p-laplacian and damping, Acta Math. Sci. 33 (2013), 975–988.
[37] T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with
p-Laplacian, damping, and mixed nonlinearities, Dynam. Syst. Appl. 20 (2011), 279–294.
[38] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,
Results Math. 18 (1990), 18–56.
[39] V. Kac and P. Chueng, Quantum Calculus, Universitext, 2002.
[40] B. Karapuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral
type with oscillating coefficients, Electron. J. Qual. Theory Differ. Equ. 34 (2009), 1–14.
[41] I. T. Kiguradze, On oscillatory solutions of some ordinary differential equations, Soviet Math.
Dokl. 144 (1962) 33–36.
[42] J. V. Manojlovic, Oscillation criteria for second-order half-linear differential equations, Math.
Comp. Mod. 30 (1999), 109–119.
[43] R. Mert, Oscillation of higher order neutral dynamic equations on time scales, Adv. Differ.
Equ. (2012) 2012:68.
[44] A. Ozbekler and A. Zafer, Oscillation of solutions of second order mixed nonlinear differential
equations under impulsive perturbations, Comput. Math. Appl. 61 (2011), no. 4, 933–940.
[45] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales,
J. Comp. Appl. Math. 177 (2005), 375–387.
[46] Y. G. Sun and J. S. Wong, Oscillation criteria for second order forced ordinary differential
equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), 549–560.
[47] T. Sun, W. Yu and H. Xi, Oscillatory behavior and comparison for higher order nonlinear
dynamic equations on time scales, J. Appl. Math. & Informatics 30 (2012), 289–304.
[48] A. Wintner, On the nonexistence of conjugate points, Amer. J. Math. 73 (1951), 368–380.
[49] Z. Yu and Q. Wang, Asymptotic behavior of solutions of third-order nonlinear dynamic equations,
J. Comp. Appl. Math. 225 (2009), 531–540.