**REFERENCES**

[1] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equation,

Canadian Appl. Math. Quart., 13 (2005) 1–17.

[2] R. P. Agarwal, M. Bohner, T. Li and C. Zhang, Hille and Nehari type criteria for third order

delay dynamic equations, J. Difference Equ. Appl. 19 2013. no. 10, 1563–1579.

[3] E. F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1961.

[4] M. Bohner and T. S. Hassan, Oscillation and boundedness of solutions to first and second order

forced functional dynamic equations with mixed nonlinearities, Appl. Anal. Discrete Math. 3 (2009), no. 2, 242–252.

[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,

Birkh¨auser, Boston, 2001

[6] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.

[7] D. Chen, Oscillation and asymptotic behavior of solutions of certain third-order nonlinear delay

dynamic equations, Theoretical Mathematics & Applications 3 (2013), 19–33.

[8] E. M. Elabbasy and T. S. Hassan, Oscillation criteria for third order functional dynamic equations,

Electron. J. Diff. Equ. 2010 (2010), no. 131 1–14.

[9] L. Erbe, Oscillation criteria for second order nonlinear delay equations, Canad. Math. Bull. 16 (1973), 49–56.

[10] L. Erbe, J. Baoguo and A. Peterson, Oscillation of nth-order superlinear dynamic equations on

time scales, Rocky Mountain J. Math. 41 (2011), no. 2, 471–491.

[11] L. Erbe and T. S. Hassan, New oscillation criteria for second order sublinear dynamic equations,

Dynam. Systems Appl. 22 (2013), no. 1, 49–64.

[12] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of third order nonlinear functional dynamic

equations on time scales, Differ. Equ. Dyn. Syst. 18 (2010), no. 1-2, 199–227.

[13] L. Erbe, T. S. Hassan and A. Peterson, Oscillation criteria for nonlinear damped dynamic

equations on time scales, Appl. Math. Comput. 203, (2008), no. 1, 343–357.

[14] L. Erbe, T. S. Hassan and A. Peterson, Oscillation criteria for nonlinear functional neutral

dynamic equations on time scales, J. Differerence Equ. Appl. 15 (2009), no. 11-12, 1097–1116.

[15] L. Erbe, T S. Hassan and A. Peterson, Oscillation of second order functional dynamic equations,

Int. J. Differerence Equ. 5, (2010), no. 2, 175–193.

[16] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay

dynamic equations on time scales, Nonlinear Dyn. Sys. Theory 9 (2009), no. 1, 51–68.

[17] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear

delay dynamic equations on time scales, Int. J. Difference Equ. 3 (2008), no. 2, 227-245.

[18] L. Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order nonlinear

dynamic equation on time scales, J. Comput. Appl. Math. 181 (2005), no. 1, 92–102.

[19] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order nonlinear delay

dynamic equations on time scales, J. Math. Anal. Appl. 333 (2007), no. 1, 505–522.

[20] L. Erbe, A. Peterson and S. H. Saker, Hille and Nehari type criteria for third order dynamic

equations, J. Math. Anal. Appl. 329 (2007), no. 1, 112–131.

[21] L. Erbe, B. Karapuz and A. Peterson, Kamenev-type oscillation criteria for higher order neutral

delay dynamic equations, Int. J. Differnce Equ. 6 (2011), no. 1, 1–16.

[22] L. Erbe, R. Mert, A. Peterson and A. Zafer, Oscillation of even order nonlinear delay dynamic

equations on time scales, Czechoslovak Math. J. 63(138) (2013), no. 1, 265–279.

[23] W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer.

Math. Soc. 19 (1918), no. 4, 341–352.

[24] M. Gera, J. R. Graef, M. Gregus, On oscillatory and asymptotic properties of solutions of

certain nonlinear third order differential equations, Nonlinear Anal. 32 (1998), no. 3, 417–425.

[25] S. R. Grace and T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations,

Math. Nachr. to appear.

[26] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second order strongly

superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul.

14 (2009), no. 8, 3463–3471.

[27] S. R. Grace, R. P. Agarwal and A. Zafer, Oscillation of higher order nonlinear dynamic equations

on time scale, Adv. Difference Equ. 2012, 2012:67, 18 pp.

[28] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press,

Cambridge, 1988.

[29] Z. Han, T. Li, S. Sun and M. Zhang, Oscillation behavior of solutions of third-order nonlinear

delay dynamic equations on time scales, Commun. Korean Math. Soc. 26 (2011), no. 3, 499–513.

[30] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math.

Comput. Modelling 49 (2009), no. 7-8, 1573–1586.

[31] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math.

Anal. Appl. 345 (2008), no. 1, 176–185.

[32] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations

on time scales, Appl. Math. Comput. 217 (2011), no. 12, 5285–5297.

[33] T. S. Hassan, Oscillation criteria for second order nonlinear dynamic equations, Adv. Difference

Equ. 2012 2012:171, 13 pp.

[34] T. S. Hassan, L. Erbe and A. Peterson, Oscillation of second order superlinear dynamic equations

with damping on time scales, Comput. Math. Appl. 59 (2010), no. 1, 550–558.

[35] T. S. Hassan and Q. Kong, Oscillation criteria for second order nonlinear dynamic equations

with p-Laplacian and damping, Acta Math. Sci. Ser. B Engl. Ed. 33 (2013), no. 4, 975–988.

[36] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,

Results Math. 18 (1990), no. 1-2, 18–56.

[37] E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252.

[38] V. Kac and P. Chueng, Quantum Calculus, Universitext, 2002.

[39] B. Karapuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral

type with oscillating coefficients, Electron J. Qual. Theory Diff. Equ. 2009 (2009), no. 34, 1–14.

[40] I. T. Kiguradze, On oscillatory solutions of some ordinary differential equations, Soviet Math.

Dokl. 144 (1962), 33–36.

[41] W. Leighton, The detection of the oscillation of solutions of a second order linear differential

equation, Duke Math. J., 17 (1950), 57–62.

[42] Z. Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math.

Soc. 85 (1957), 428–445.

[43] J. Ohriska, Oscillation of second order delay and ordinary differential equations, Czechoslovak

Math. J. 34 (1984), no. 1, 107–112.

[44] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J.

Comput. Appl. Math. 177 (2005), no. 2, 375–387.

[45] T. Sun, W. Yu and H. Xi, Oscillatory behavior and comparison for higher order nonlinear

dynamic equations on time scales, J. Appl. Math. Inform. 30 (2012), no. 1-2, 289–304.

[46] Y. Wang and Z. Xu, Asymptotic properties of solutions of certain third order dynamic equations,

J. Comput. Appl. Math. 236 (2012), no. 9, 2354–2366.

[47] A. Wintner, On the nonexistence of conjugate points, Amer. J. Math. 73 (1951), 368–380.

[48] J. S. W. Wong, Second order oscillation with retarded arguments, in Ordinary differential

equations, 581–596, Washington, 1971, Academic press, New York and London, 1972.

[49] Z. Yu and Q. Wang, Asymptotic behavior of solutions of third-order nonlinear dynamic equations,

J. Comp. Appl. Math. 225 (2009), no. 2, 531–540.