**REFERENCES**

[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.

[2] R. P. Agarwal and D. O’Regan, Fixed point theory for set valued mappings between topological

vector spaces having sufficiently many linear functionals, Computers and Mathematics with Applications 41 (2001), 917–928.

[3] R. P. Agarwal and D. O’Regan, Homototy results for weakly sequentially upper semicontinuous maps, Nonlinear Functional Analysis and Applications 8 (2003), 111–122.

[4] R. P. Agarwal, D. O’Regan, M. A. Taoudi, Browder-Krasnoselskii type fixed point theorems

in Banach spaces, Fixed Point Theory Appl. 2010, 243716, 20 pp.

[5] R. P. Agarwal, D. O’Regan and M. A. Taoudi, Fixed point theorems for condensing mappings

under weak topology features, Fixed Point Theory 12 (2011), 247–254.

[6] R. P. Agarwal, D. O’Regan and M. A. Taoudi, Fixed point theory for multivalued weakly

convex-power condensing mappings with application to integral inclusions, Memoirs on Differential

Equations and Mathematical Physics 57 (2012), 17–40.

[7] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,

Proc. Sympos. Pure Math. 18 (1976), 1–305.

[8] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math.

Roum. 21 (1977), 259–262.

[9] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, 1985.

[10] R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965.

[11] K. Floret, Weakly compact sets, Lecture Notes Math. 801 (1980), 1–123.

[12] D. O’Regan, A fixed point theorem for weakly condensing operators, Proc. Royal Soc. Edinburgh

126A (1996), 391–398.

[13] D. O’Regan and M. A. Taoudi, Fixed point theorems for the sum of two weakly sequentially

continuous mappings, Nonlinear Anal. 73 (2010), no. 2, 283–289.