REFERENCES
[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
[2] R. P. Agarwal and D. O’Regan, Fixed point theory for set valued mappings between topological
vector spaces having sufficiently many linear functionals, Computers and Mathematics with Applications 41 (2001), 917–928.
[3] R. P. Agarwal and D. O’Regan, Homototy results for weakly sequentially upper semicontinuous maps, Nonlinear Functional Analysis and Applications 8 (2003), 111–122.
[4] R. P. Agarwal, D. O’Regan, M. A. Taoudi, Browder-Krasnoselskii type fixed point theorems
in Banach spaces, Fixed Point Theory Appl. 2010, 243716, 20 pp.
[5] R. P. Agarwal, D. O’Regan and M. A. Taoudi, Fixed point theorems for condensing mappings
under weak topology features, Fixed Point Theory 12 (2011), 247–254.
[6] R. P. Agarwal, D. O’Regan and M. A. Taoudi, Fixed point theory for multivalued weakly
convex-power condensing mappings with application to integral inclusions, Memoirs on Differential
Equations and Mathematical Physics 57 (2012), 17–40.
[7] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,
Proc. Sympos. Pure Math. 18 (1976), 1–305.
[8] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math.
Roum. 21 (1977), 259–262.
[9] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, 1985.
[10] R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965.
[11] K. Floret, Weakly compact sets, Lecture Notes Math. 801 (1980), 1–123.
[12] D. O’Regan, A fixed point theorem for weakly condensing operators, Proc. Royal Soc. Edinburgh
126A (1996), 391–398.
[13] D. O’Regan and M. A. Taoudi, Fixed point theorems for the sum of two weakly sequentially
continuous mappings, Nonlinear Anal. 73 (2010), no. 2, 283–289.