**REFERENCES**

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value

Problems, Wiley, New York, 3rd ed., 1977.

[2] P. L. Chamber, On the solution of the Poisson-Boltzmann equation with the application to

the theory of thermal explosions, J. Chem. Phys., 20 (1952) 1795–1797.

[3] J. B. Keller, Electrohydrodynamics I. The equilibrium of a charged gas in a container, J.

Rational Mech. Anal., 5 (1956) 715–724.

[4] R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems,

SlAM J. Numer. Anal., 12 (1975) 13–36.

[5] M. M. Chawla, P. N. Shivkumar, On the existence of solutions of a class of singular nonlinear

two-point boundary value problems, J. Comput. Appl. Math., 19 (1987) 379–388.

[6] A. K. Verma, Monotone iterative method and zero’s of Bessel functions for nonlinear singular

derivative dependent BVP in the presence of upper and lower solutions, Nonlinear Anal., 74 (14) (2011) 4709–4717.

[7] A. K. Verma and R. P. Agarwal, Upper and lower solutions method for regular singular differential

equations with quasi-derivative boundary conditions, Communications in Nonlinear

Science and Numerical Simulation, 17, Issue 12, 4551–4558.

[8] A. K. Verma, R. P. Agarwal and L. Verma, Bessel functions and singular BVPs arising in

physiology in the presence of upper and lower solutions in reverse order, Journal of Applied

Mathematics and Computing, 39, Numbers 1-2 (2012), 445–457.

[9] Zhang, Y., Positive solutions of singular sublinear Dirichlet boundary value problems, SIAM

J. Math. Anal., 26 (1995), 329–339.

[10] M. Gregus, F. Neumann, and F. M. Arscott, Three-point boundary value problems for differential

equations, J. London Math. Soc., 3, (1971) 429–436.

[11] A. R. Aftabizadeh, C. P. Gupta, and Jian-Ming Xu, Existence and uniqueness theorems for

three-point boundary value problem, SIAM J. Math. Anal., 20 (1989) 716–726.

[12] C. P. Gupta, S. I. Trofimchuk, Existence of a solution of a three-point boundary value problem

and spectral radius of a related linear operator, Nonlinear Anal., 34 (1998) 489–507.

[13] R. Ma, Existence of solutions of nonlinear m-point boundary-value problems, J. Math. Anal.

Appl., 256 (2001) 556–567.

[14] J. Henderson, B. Karna and C. C. Tisdell, Existence of solutions for three-point boundary

value problems for second order equations, Proc. Amer. Math. Soc., 133 (2005) 1365–1369.

[15] F. Li, M. Jia, X. Liu, C. Li, G. Li, Existence and uniqueness of solutions of second-order

three-point boundary value problems with upper and lower solutions in the reversed order,

Nonlinear Anal., 68 (2008) 2381–2388.

[16] J. Nieto, An abstract monotone iterative technique, Nonlinear Analysis, 28 (1997) 1923–1933.

[17] D. Bai, H. Feng, Eigenvalue for a singular second order three-point boundary value problem,

Journal of Applied Mathematics and Computing, 38 (2012) 443–452.

[18] M. Singh and A. K. Verma, Picard type iterative scheme with initial iterates in reverse order for

a class of nonlinear three point BVPs, International Journal of Differential Equation, Volume

2013 (2013), Article ID 728149, 6 pages.

[19] M. Singh and A. K. Verma, On a monotone iterative method for a class of three point nonlinear

nonsingular BVPs with upper and lower solutions in reverse order, Journal of Applied

Mathematics and Computing, 43 (2013) 99–114.

[20] E. Picard, Sur l’application des m´ethodes d’approximations succesives `a l’´etude de certains

´equations differentielles ordinaires, Journal de Math´ematiques Pures et Appliqu´ees, 9 (1893)

217–271.

[21] A. Erdrlyi, Ed., Higher Transcendental Functions, Vol. 1I, Bateman Manuscript Project,

McGraw-Hill, New York, 1953.