ON THE MILD SOLUTIONS OF QUANTUM STOCHASTIC EVOLUTION INCLUSIONS

TitleON THE MILD SOLUTIONS OF QUANTUM STOCHASTIC EVOLUTION INCLUSIONS
Publication TypeJournal Article
Year of Publication2015
AuthorsOGUNDIRAN, MO
Volume19
Issue2
Start Page307
Pagination12
Date Published2015
ISSN1083-2564
AMS34A60, 81S25
Abstract

Under a Filippov-type assumption, a study of the Quantum stochastic evolution inclusions is done in this paper. Given a quantum stochastic evolution inclusions: $${  dx(t) ∈ Ax(t) + \int^t_0 K(t, s)(E(s, x(s))dΛ_π(s) + F(s, x(s))dA_f (s) }$$ $${ + G(s, x(s))dA^{+}_g (s) + H(s, x(s))ds) \ \ \ \ \ \ \ \ \ \ \ \ }$$ $${ x(t_0) = x_0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$$ where ${ A }$ is the infinitesimal generator of a ${ C_0 }$-semigroup of operators, ${ K }$ is a continuous function and ${ E, F, G, H }$ are Lipschitzian multivalued stochastic processes. We established the existence of mild solutions of the quantum stochastic evolution inclusions.

URLhttp://www.acadsol.eu/en/articles/19/2/11.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] A. Anguraj and C. Murugesan, Continuous selections of set of mild solutions of evolution
inclusions, Electronic J. Diff. Equations 21 (2005), 1–7.
[2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin 1984.
[3] E. O. Ayoola, Continuous selections of solution sets of Lipschitzian quantum stochastic differential
inclusions.Int. J. Theor.Phys. 43, 10 (2004), 2041–2059.
[4] E. O. Ayoola, Topological properties of solution sets of Lipschitzian quantum stochastic differential
inclusions.Acta Appl.Math 100 (2008), 15–37.
[5] A. Cernea, On an Evolution inclusion in non-separable Banach spaces Opuscula Mathematica 29, 2 (2009), 131–138.
[6] K. Deimling, Multivalued differential equations, Walter de Gruyter 199
[7] F. S. De Blasi and G. Pianigiani, Evolution inclusions in non separable Banach spaces, Comment.
Math. Univ. Carolinae. 40, 11 (1999) 227–250.
[8] G. O. S. Ekhaguere, Lipschitzian quantum stochastic differential inclusions Int. J. Theor.
Phys. 31, 11 (1992) 2003–2034.
[9] G. O. S. Ekhaguere, Quantum stochastic differential inclusions of hypermaximal monotone
type Int. J. Theor. Phys. 34, 3 (1995), 323–353.
[10] G.O. S. Ekhaguere, Quantum stochastic evolutions Int. J. Theor. Phys. 35, 9 (1996), 1909– 1946.
[11] F. Fagnola and S. J. Wills, Mild solutions of quantum stochastic differential equations, Elect.
Comm. in Probab. 5 (2000), 158–171.
[12] A. Guichardet, Symmetric Hilbert spaces and related topics Lecture Notes in Mathematics,
261, Springer-Verlag, Berlin 1972.
[13] R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolutions
Comm. Math. Phys. 93, 3 (1984), 301–323.
[14] M. O. Ogundiran and E. O. Ayoola, Upper semicontinuous Quantum stochastic differential
Inclusions via Kakutani-Fan Fixed point theorem, Dynamics systems and applications, 21 (2012), 121–132.
[15] K. R. Parthasarathy, An introduction to Quantum stochastic calculus, Monographs in Mathematics
85, Birkhauser Verlag, Basel 1992.
[16] V. Staicu, Continuous selections of solution sets to Evolution equations Proc. Amer. Math.
Soc. 113, 2 (1991), 403–413.