REFERENCES
[1] A. Anguraj and C. Murugesan, Continuous selections of set of mild solutions of evolution
inclusions, Electronic J. Diff. Equations 21 (2005), 1–7.
[2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin 1984.
[3] E. O. Ayoola, Continuous selections of solution sets of Lipschitzian quantum stochastic differential
inclusions.Int. J. Theor.Phys. 43, 10 (2004), 2041–2059.
[4] E. O. Ayoola, Topological properties of solution sets of Lipschitzian quantum stochastic differential
inclusions.Acta Appl.Math 100 (2008), 15–37.
[5] A. Cernea, On an Evolution inclusion in non-separable Banach spaces Opuscula Mathematica 29, 2 (2009), 131–138.
[6] K. Deimling, Multivalued differential equations, Walter de Gruyter 199
[7] F. S. De Blasi and G. Pianigiani, Evolution inclusions in non separable Banach spaces, Comment.
Math. Univ. Carolinae. 40, 11 (1999) 227–250.
[8] G. O. S. Ekhaguere, Lipschitzian quantum stochastic differential inclusions Int. J. Theor.
Phys. 31, 11 (1992) 2003–2034.
[9] G. O. S. Ekhaguere, Quantum stochastic differential inclusions of hypermaximal monotone
type Int. J. Theor. Phys. 34, 3 (1995), 323–353.
[10] G.O. S. Ekhaguere, Quantum stochastic evolutions Int. J. Theor. Phys. 35, 9 (1996), 1909– 1946.
[11] F. Fagnola and S. J. Wills, Mild solutions of quantum stochastic differential equations, Elect.
Comm. in Probab. 5 (2000), 158–171.
[12] A. Guichardet, Symmetric Hilbert spaces and related topics Lecture Notes in Mathematics,
261, Springer-Verlag, Berlin 1972.
[13] R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolutions
Comm. Math. Phys. 93, 3 (1984), 301–323.
[14] M. O. Ogundiran and E. O. Ayoola, Upper semicontinuous Quantum stochastic differential
Inclusions via Kakutani-Fan Fixed point theorem, Dynamics systems and applications, 21 (2012), 121–132.
[15] K. R. Parthasarathy, An introduction to Quantum stochastic calculus, Monographs in Mathematics
85, Birkhauser Verlag, Basel 1992.
[16] V. Staicu, Continuous selections of solution sets to Evolution equations Proc. Amer. Math.
Soc. 113, 2 (1991), 403–413.