COMPARISON THEOREMS FOR HIGHER ORDER FORCED NONLINEAR FUNCTIONAL DYNAMIC EQUATIONS

TitleCOMPARISON THEOREMS FOR HIGHER ORDER FORCED NONLINEAR FUNCTIONAL DYNAMIC EQUATIONS
Publication TypeJournal Article
Year of Publication2015
AuthorsERBE, LYNN, HASSAN, TAHERS
Volume19
Issue1
Start Page79
Pagination16
Date Published2015
ISSN1083-2564
AMS34K11, 39A10, 39A99
Abstract

The purpose of this paper is to establish comparison criteria for higher order forced nonlinear dynamic equation with mixed nonlinearities $${ \left\{  r_{n−1}(t) (r_{n−2}(t)(· · ·(r_1(t)x^∆(t))^∆ · · ·)^∆)^∆  \right\}^∆ + \sum_{j=0}^{N}  p_j (t) ϕ_{γ_j} ( x (\varphi_j (t))  = g(t) , }$$ on an above-unbounded time scale${ \mathbb{T} }$, where ${ n ≥ 2}$. The results improve the main results of a number of recent papers and are established for a time scale ${ \mathbb{T} }$ without assuming certain restrictive conditions on ${ \mathbb{T} }$.

 

URLhttp://www.acadsol.eu/en/articles/19/1/6.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equation,
Canadian Appl. Math. Quart., 13 (2005) 1–17.
[2] E. Akin-Bohner and J. Hoffacker, Oscillation properties of an Emden-Fowler type equation on
Discrete Time Scales, Journal of Difference Equations and Applications 9 (2003) 603–612.
[3] Ravi P.Agarwal, Said R.Grace and D.O’Regan , “Oscillation Theory for Second Order Dynamic
Equations” Taylor & Francis, London,2003.
[4] E. F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1961.
[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh¨auser, Boston, 2001.
[6] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.
[7] M. Bohner and T. S. Hassan, Oscillation and boundedness of solutions to first and second
order forced functional dynamic equations with mixed nonlinearities, Applicable Analysis and
Discrete Mathematics 59 (2009) 242–252.
[8] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay
dynamic equations on time scales, Nonlinear Dynam. Sys. Th. 9 (1) (2009) 51–68.
[9] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear
delay dynamic equations on time scales, Int. J. Difference Equ., 3 (2008) 227–245.
[10] L. Erbe, R. Mert, A. Peterson and A. Zafer, Oscillation of even order nonlinear delay dynamic
equations on time scales, Czechoslovak Mathematical Journal 63 (138) (2013) 265–279.
[11] S. R. Grace and T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations,
Math. Nachr. 1–15 (2014) / DOI 10.1002/mana.201300157.
[12] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second order strongly
superlinear and strongly sublinear dynamic equations, Commun. Nonlin. Sci. Numer. Simul. 14
(2009) 3463–3471.
[13] Z. Han, S. Sun and B. Shi, Oscillation criteria for a class of second order Emden delay dynamic
equations on time scales, J. Math. Anal. Appl. 334 (2007), 847–858.
[14] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press,
Cambridge, 1988.
[15] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math.
Anal. Appl. 345 (2008) 176–185.
[16] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales,
Mathematical and Computer Modeling 49 (2009) 1573–1586.
[17] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations
on time scales, Applied Mathematics and Computation 217 (2011) 5285–5297.
[18] T. S. Hassan, Oscillation criteria for second order nonlinear dynamic equations, Advances in
Difference Equations 2012, 2012:171, 1–13.
[19] T. S. Hassan, Comparison criterion for even order forced nonlinear functional dynamic equations,
Commun. Appl. Anal. 18 (2014), 109–122.
[20] T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential
equations with mixed nonlinearities, Acta Math. Scientia (2011) 31B(2): 613–626.
[21] T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with pLaplacian,
damping, and mixed nonlinearities, Dynamic Systems & Applications 20 (2011),279–
294.
[22] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,
Results Math. 18 (1990) 18–56.
[23] V. Kac and P. Chueng, Quantum Calculus, Universitext, 2002.
[24] R. Mert, A, Zafer, A necessary and sufficient condition for oscillation of second order sublinear
dealy dynamic equations, Discrete Contin. Dyn. Syst. Supplement Volume (2011) 1061–1067.