**REFERENCES**

[1] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equation,

Canadian Appl. Math. Quart., 13 (2005) 1–17.

[2] E. Akin-Bohner and J. Hoffacker, Oscillation properties of an Emden-Fowler type equation on

Discrete Time Scales, Journal of Difference Equations and Applications 9 (2003) 603–612.

[3] Ravi P.Agarwal, Said R.Grace and D.O’Regan , “Oscillation Theory for Second Order Dynamic

Equations” Taylor & Francis, London,2003.

[4] E. F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1961.

[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh¨auser, Boston, 2001.

[6] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.

[7] M. Bohner and T. S. Hassan, Oscillation and boundedness of solutions to first and second

order forced functional dynamic equations with mixed nonlinearities, Applicable Analysis and

Discrete Mathematics 59 (2009) 242–252.

[8] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay

dynamic equations on time scales, Nonlinear Dynam. Sys. Th. 9 (1) (2009) 51–68.

[9] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear

delay dynamic equations on time scales, Int. J. Difference Equ., 3 (2008) 227–245.

[10] L. Erbe, R. Mert, A. Peterson and A. Zafer, Oscillation of even order nonlinear delay dynamic

equations on time scales, Czechoslovak Mathematical Journal 63 (138) (2013) 265–279.

[11] S. R. Grace and T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations,

Math. Nachr. 1–15 (2014) / DOI 10.1002/mana.201300157.

[12] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second order strongly

superlinear and strongly sublinear dynamic equations, Commun. Nonlin. Sci. Numer. Simul. 14

(2009) 3463–3471.

[13] Z. Han, S. Sun and B. Shi, Oscillation criteria for a class of second order Emden delay dynamic

equations on time scales, J. Math. Anal. Appl. 334 (2007), 847–858.

[14] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press,

Cambridge, 1988.

[15] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math.

Anal. Appl. 345 (2008) 176–185.

[16] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales,

Mathematical and Computer Modeling 49 (2009) 1573–1586.

[17] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations

on time scales, Applied Mathematics and Computation 217 (2011) 5285–5297.

[18] T. S. Hassan, Oscillation criteria for second order nonlinear dynamic equations, Advances in

Difference Equations 2012, 2012:171, 1–13.

[19] T. S. Hassan, Comparison criterion for even order forced nonlinear functional dynamic equations,

Commun. Appl. Anal. 18 (2014), 109–122.

[20] T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential

equations with mixed nonlinearities, Acta Math. Scientia (2011) 31B(2): 613–626.

[21] T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with pLaplacian,

damping, and mixed nonlinearities, Dynamic Systems & Applications 20 (2011),279–

294.

[22] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,

Results Math. 18 (1990) 18–56.

[23] V. Kac and P. Chueng, Quantum Calculus, Universitext, 2002.

[24] R. Mert, A, Zafer, A necessary and sufficient condition for oscillation of second order sublinear

dealy dynamic equations, Discrete Contin. Dyn. Syst. Supplement Volume (2011) 1061–1067.