REFERENCES
[1] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equation,
Canadian Appl. Math. Quart., 13 (2005) 1–17.
[2] E. Akin-Bohner and J. Hoffacker, Oscillation properties of an Emden-Fowler type equation on
Discrete Time Scales, Journal of Difference Equations and Applications 9 (2003) 603–612.
[3] Ravi P.Agarwal, Said R.Grace and D.O’Regan , “Oscillation Theory for Second Order Dynamic
Equations” Taylor & Francis, London,2003.
[4] E. F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1961.
[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh¨auser, Boston, 2001.
[6] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.
[7] M. Bohner and T. S. Hassan, Oscillation and boundedness of solutions to first and second
order forced functional dynamic equations with mixed nonlinearities, Applicable Analysis and
Discrete Mathematics 59 (2009) 242–252.
[8] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay
dynamic equations on time scales, Nonlinear Dynam. Sys. Th. 9 (1) (2009) 51–68.
[9] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear
delay dynamic equations on time scales, Int. J. Difference Equ., 3 (2008) 227–245.
[10] L. Erbe, R. Mert, A. Peterson and A. Zafer, Oscillation of even order nonlinear delay dynamic
equations on time scales, Czechoslovak Mathematical Journal 63 (138) (2013) 265–279.
[11] S. R. Grace and T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations,
Math. Nachr. 1–15 (2014) / DOI 10.1002/mana.201300157.
[12] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second order strongly
superlinear and strongly sublinear dynamic equations, Commun. Nonlin. Sci. Numer. Simul. 14
(2009) 3463–3471.
[13] Z. Han, S. Sun and B. Shi, Oscillation criteria for a class of second order Emden delay dynamic
equations on time scales, J. Math. Anal. Appl. 334 (2007), 847–858.
[14] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press,
Cambridge, 1988.
[15] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math.
Anal. Appl. 345 (2008) 176–185.
[16] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales,
Mathematical and Computer Modeling 49 (2009) 1573–1586.
[17] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations
on time scales, Applied Mathematics and Computation 217 (2011) 5285–5297.
[18] T. S. Hassan, Oscillation criteria for second order nonlinear dynamic equations, Advances in
Difference Equations 2012, 2012:171, 1–13.
[19] T. S. Hassan, Comparison criterion for even order forced nonlinear functional dynamic equations,
Commun. Appl. Anal. 18 (2014), 109–122.
[20] T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential
equations with mixed nonlinearities, Acta Math. Scientia (2011) 31B(2): 613–626.
[21] T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with pLaplacian,
damping, and mixed nonlinearities, Dynamic Systems & Applications 20 (2011),279–
294.
[22] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,
Results Math. 18 (1990) 18–56.
[23] V. Kac and P. Chueng, Quantum Calculus, Universitext, 2002.
[24] R. Mert, A, Zafer, A necessary and sufficient condition for oscillation of second order sublinear
dealy dynamic equations, Discrete Contin. Dyn. Syst. Supplement Volume (2011) 1061–1067.