**REFERENCES**

[1] P. Bailey, N. Everitt, A. Zettl, SLEIGN2 package for Sturm-Liouville problems, see web site: www.math.niu.edu/SL2/.

[2] J. Chamberlain, L. Kong, and Q. Kong, Nodal solutions of boundary value problems with boundary conditions involving Riemann-Stieltjes integrals, Nonlinear Anal., 74 (2011), 2380– 2387.

[3] P.W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett. 18 (2005) 521–527.

[4] J.R. Graef, J. Henderson, B. Yang, Positive solutions to a singular third order nonlocal boundary value problem, Indian J. Math. 50 (2008) 317–330.

[5] J. R. Graef and B. Yang, Positive solutions to a multi-point higher order boundary value problem, J. Math. Anal. Appl. 316 (2006), 409–421.

[6] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of m-point nonlinear

boundary value problems, Math. Model. Anal. 13 (2008) 357–370.

[7] Q. Kong, Existence and nonexistence of solutions of second-order nonlinear boundary value

problems, Nonlinear Anal. 66 (2007), 2635–2651.

[8] Q. Kong and T. E. St. George, Matching method for nodal solutions of multi-point boundary

value problems, Differ. Equ. Appl., 5 (2013), 13–31.

[9] L. Kong, Q. Kong, and J. S. W. Wong, Nodal solutions of multi-point boundary value problems,

Nonlinear Anal. 72 (2010), 382–389.

[10] Q. Kong, H. Wu, A. Zettl, Dependence of the nth Sturm-Liouville eigenvalue on the problem,

J. Differential Equations 156 (1999), 328–354.

[11] Q. Kong, H. Wu, and A. Zettl, Limits of Sturm-Liouville eigenvalues when the interval shrinks

to an end point, Proc. Roy. Soc. Edinburgh, 138 A (2008), 323–338.

[12] Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations

131 (1996), 1–19.

[13] M. K. Kwong, The shooting method and multiple solutions of two/multi-point BVPs of secondorder

ODE, Electron. J. Qual. Theory Differ. Equ. 6 (2006), 14 pp.

[14] M. K. Kwong and J. S. W. Wong, The Shooting Method and Non-homogeneous Multi-point

BVPs of Second Order ODE, Boundary Value Problems, Vol. 2007, Art. ID 64012, 16pp.

[15] R. Ma, Nodal solutions for a second-order m-point boundary value problem, Czech. Math. J.,

56(131) (2006), 1243–1263.

[16] R. Ma and D. O’Regan, Nodal solutions for second-order m-point boundary value problems

with nonlinearities across several eigenvalues, Nonlinear Anal., 64 (2006), 1562–1577.

[17] B. P. Rynne, Spectral properties and nodal solutions for second-order, m-point, boundary

value problems, Nonlinear Anal., 67 (2007), 3318–3327.

[18] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of

nonlinear boundary value problems of local and nonlocal type, Topological Methods Nonlinear

Analysis, 27 (2006), 91–115.

[19] X. Xu, Multiple sign-changing solutions for some m-point boundary-value problems, Electronic

J. Diff. Eqns., 2004 (2004), No. 89, 1–14.

[20] X. Xu, J. Sun, and D. O’Regan, Nodal solutions for m-point boundary value problems using

bifurcation methods, Nonlinear Analysis (2007), doi: 10.1016/j.na.2007.02.043.

[21] B. Yang, Positive solutions of a third-order three-point boundary-value problem, Electron. J.

Differential Equations 2008 (99) (2008) 10.

[22] A. Zettl, Sturm-Liouville theory, in: Mathematical Surveys and Monographs, vol. 121, American

Mathematical Society, 2005.