REFERENCES
[1] P. Bailey, N. Everitt, A. Zettl, SLEIGN2 package for Sturm-Liouville problems, see web site: www.math.niu.edu/SL2/.
[2] J. Chamberlain, L. Kong, and Q. Kong, Nodal solutions of boundary value problems with boundary conditions involving Riemann-Stieltjes integrals, Nonlinear Anal., 74 (2011), 2380– 2387.
[3] P.W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett. 18 (2005) 521–527.
[4] J.R. Graef, J. Henderson, B. Yang, Positive solutions to a singular third order nonlocal boundary value problem, Indian J. Math. 50 (2008) 317–330.
[5] J. R. Graef and B. Yang, Positive solutions to a multi-point higher order boundary value problem, J. Math. Anal. Appl. 316 (2006), 409–421.
[6] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of m-point nonlinear
boundary value problems, Math. Model. Anal. 13 (2008) 357–370.
[7] Q. Kong, Existence and nonexistence of solutions of second-order nonlinear boundary value
problems, Nonlinear Anal. 66 (2007), 2635–2651.
[8] Q. Kong and T. E. St. George, Matching method for nodal solutions of multi-point boundary
value problems, Differ. Equ. Appl., 5 (2013), 13–31.
[9] L. Kong, Q. Kong, and J. S. W. Wong, Nodal solutions of multi-point boundary value problems,
Nonlinear Anal. 72 (2010), 382–389.
[10] Q. Kong, H. Wu, A. Zettl, Dependence of the nth Sturm-Liouville eigenvalue on the problem,
J. Differential Equations 156 (1999), 328–354.
[11] Q. Kong, H. Wu, and A. Zettl, Limits of Sturm-Liouville eigenvalues when the interval shrinks
to an end point, Proc. Roy. Soc. Edinburgh, 138 A (2008), 323–338.
[12] Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations
131 (1996), 1–19.
[13] M. K. Kwong, The shooting method and multiple solutions of two/multi-point BVPs of secondorder
ODE, Electron. J. Qual. Theory Differ. Equ. 6 (2006), 14 pp.
[14] M. K. Kwong and J. S. W. Wong, The Shooting Method and Non-homogeneous Multi-point
BVPs of Second Order ODE, Boundary Value Problems, Vol. 2007, Art. ID 64012, 16pp.
[15] R. Ma, Nodal solutions for a second-order m-point boundary value problem, Czech. Math. J.,
56(131) (2006), 1243–1263.
[16] R. Ma and D. O’Regan, Nodal solutions for second-order m-point boundary value problems
with nonlinearities across several eigenvalues, Nonlinear Anal., 64 (2006), 1562–1577.
[17] B. P. Rynne, Spectral properties and nodal solutions for second-order, m-point, boundary
value problems, Nonlinear Anal., 67 (2007), 3318–3327.
[18] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of
nonlinear boundary value problems of local and nonlocal type, Topological Methods Nonlinear
Analysis, 27 (2006), 91–115.
[19] X. Xu, Multiple sign-changing solutions for some m-point boundary-value problems, Electronic
J. Diff. Eqns., 2004 (2004), No. 89, 1–14.
[20] X. Xu, J. Sun, and D. O’Regan, Nodal solutions for m-point boundary value problems using
bifurcation methods, Nonlinear Analysis (2007), doi: 10.1016/j.na.2007.02.043.
[21] B. Yang, Positive solutions of a third-order three-point boundary-value problem, Electron. J.
Differential Equations 2008 (99) (2008) 10.
[22] A. Zettl, Sturm-Liouville theory, in: Mathematical Surveys and Monographs, vol. 121, American
Mathematical Society, 2005.