Title | OSCILLATORY THEOREMS FOR CERTAIN SECOND ORDER DAMPED DYNAMIC INCLUSIONS WITH DISTRIBUTED DEVIATING ARGUMENTS |
Publication Type | Journal Article |
Year of Publication | 2015 |
Authors | GRACE, SAID, AKIN, ELVAN, AGARWAL, RAWI |
Secondary Title | Communications in Applied Analysis |
Volume | 19 |
Issue | 1 |
Start Page | 3 |
Pagination | 14 |
Date Published | 01/2015 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 34N05, 39A10. |
Abstract | We shall establish some new criteria for the oscillation of second order nonlinear damped dynamic inclusions with distributed deviating arguments on time scales.
|
URL | http://www.acadsol.eu/en/articles/19/1/1.pdf |
Short Title | SECOND ORDER DAMPED DYNAMIC INCLUSIONS |
Refereed Designation | Refereed |
Full Text | REFERENCES[1] E. Akın-Bohner, and S. Sun, Oscillation Criteria for a class of second order strongly superlinear and sublinear dynamic inclusions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 19, 2012, no. 3, 285–294.
[2] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations. Kluwer, Dordrecht, 2002. [3] R. P. Agarwal, M. Bohner, S. R. Grace and D. O’Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, 2005. [4] R. P. Agarwal, S. R. Grace, D. O’Regan, On nonoscillatory solutions of differential inclusions, Prec. Amer. Math. Soc., 181(2003), 129–140. [5] R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation criteria for sublinear and superlinear second order differential inclusions, Mem. Diff. Eqns. Math. Physic. 28(2003), 1–12. [6] R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation theorems for second order differential inclusions. Ont. J. Dynamic System. Diff. Eqns., 1(2007), 85–88. [7] R. P. Agarwal, S. R. Grace, D. O’Regan, Some nonoscillation criteria for inclusions, J. Aust. Math. Soc., 80(2006), 1–12.
[8] R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation criteria for second order differential inclusions, Adv. Stud. Contem. Math 16(2008), 47–56. [9] M. Bohner, Some oscillation criteria for first order delay dynamic equations. Far J. Appl. Math. 18(2005), 289–304. [10] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston, 2001. [11] T. Candan, Oscillation of second order nonlinear neutral dynamic equation on time scales with distributed deviating arguments. Compt. Math. Appl. 62(11)(2011), 471–491. [12] L. Erbe, A. Peterson and P. Rehak, Comparison theorems for linear dynamic equations on time scales, J. Math. Anal. Appl., 275(2002), 418–438. [13] L. Erbe, T. Hassan and A. Peterson, Oscillation criteria for nonlinear functional neutral dynamic equations on time scales, J. Diff. Eqn. Appl., 15(2009), 1097–116. [14] S. R. Grace, R. P. Agarwal and D. O’Regan, A selection of oscillation criteria for second order differential inclusions, Appl. Math Letters. 22(2009), 153–158. [15] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second order strongly superlinear and strongly sublinear dynamic inclusions, Comum. Nonlinear Sci. Numer. Stimul., 14 (2009), 3463–3471. [16] S. R. Grace, R. P. Agarwal, B. Kaymakalan and W. Sae-jie, Oscillation theorems for second order nonlinear dynamic equations, Appl. Math. Comput., 32(2010), 205–218. [17] S. R. Grace, E. Akın and M. Dikmen, On the oscillation of second order nonlinear neutral dynamic equations with distributed deviating arguments on time scales, Dynamic Systems and Applications. To appear, 2014. [18] S. R. Grace, M. Bohner and R. P. Agarwal,On the oscillation of second order half-linear dynamic equations, J. Difference Eqn. Appl., 15(2009), 451–460. [19] S. Hilger, Analysis on measure chains- a unified approach to continuous and discrete calculus, Results Math., 19(1990), 18–56. [20] S. H. Saker, Oscillation criteria for second order halflinear dynamic equations on time scales, J. Comput. Appl. Math., 177(2005), 375–387. |