**REFERENCES**

[1] B. Ahmad, Existence of solutions for fractional differential equations of order q ∈ (2, 3] with

anti-periodic boundary conditions, J. Appl. Math. Comput. 34 (2010), no. 1-2, 385–391.

[2] B. Ahmad, A. Alsaedi, Existence and uniqueness of solutions for coupled systems of higher

order nonlinear fractional differential equations, Fixed Point Theory Appl. 2010 (2010), Art. ID 364560, 1–17.

[3] B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential

equations with integral boundary conditions, Bound. Value Probl. 2009 (2009), Art. ID 708576, 11 pp.

[4] B. Ahmad, S. K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractional differential

equations with three-point integral boundary conditions, Adv. Differ. Equ. 2011 (2011), Art. ID 107384, 11 pp.

[5] B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear

integro-differential equations of fractional order, Appl. Math. Comput. 217 (2010), no. 2, 480– 487.

[6] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal, B. Ahmad, A nonlocal multi-point multi-term fractional

boundary value problem with Riemann-Liouville , Adv. Differ. Equ. (2013), 2013:369.

[7] Z. B. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear

Anal. 72 (2010), 916–924.

[8] K. Balachandran, J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential

equations in Banach spaces, Nonlinear Anal. 72 (2010) 4587–4593.

[9] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations

with fractional order, Surv. Math. Appl. 3 (2008), 1–12.

[10] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations

with fractional order and nonlocal conditions, Nonlinear Anal. 71 (2009), 2391–2396.

[11] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.

[12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential

Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[13] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary

differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–

786.

[14] S. K. Ntouyas, Boundary value problems for nonlinear fractional differential equations and

inclusions with nonlocal and fractional integral boundary conditions, Opuscula Math. 33 (2013),

117–138.

[15] D. O’Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett. 9 (1996), 1–8.

[16] W. V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Rational Mech.

Anal. 40 (1970-1971), 312–328.

[17] W. V. Petryshyn, P. M. Fitzpatric, A degree theory, fixed point theorems, and mapping theorems

for multivalued noncompact maps, Trans. Amer. Math. Soc., 194 (1974), 1–25.

[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[19] J. Sabatier, O. P. Agrawal, J. A. T. Machado (Eds.), Advances in Fractional Calculus: Theoretical

Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.

[20] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and

Applications, Gordon and Breach, Yverdon, 1993.

[21] W. Sudsutad, J. Tariboon, S. K. Ntouyas, Positive solutions for fractional differential equations

with three-point multi-term fractional integral boundary conditions, Adv. Differ. Equ. (2014),

2014:28.

[22] J. Tariboon, T. Sitthiwirattham, S. K. Ntouyas, Boundary value problems for a new class of

three-point nonlocal Riemann-Liouville integral boundary conditions, Adv. Differ. Equ. (2013),

2013:213.

[23] W. Zhong, W. Lin, Nonlocal and multiple-point boundary value problem for fractional differential

equations, Comput. Math. Appl. 39 (2010), 1345–1351.