REFERENCES
[1] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations,
Proc. Amer. Math. Soc. 120 (1994), 743–748.
[2] K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,J. Differential Equations 148, (1998), 407–421.
[3] K. Q. Lan, Multiple positive solutions of Hammerstein integral equations and applications to
periodic boundary value problems, Appl. Math. Comput. 154 (2004), 531–542.
[4] H. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations202 (2004), 354–366.
[5] R. Ma, A survey on nonlocal boundary value problems, Applied Mathematics E-Notes 7 (2007),257–279.
[6] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified
approach, J. London Math. Soc. 74 (2006), 673–693.
[7] J. R. Graef, L. Kong and H. Wang, A periodic boundary value problem with vanishing Green’sfunction, Appl. Math. Letters 21 (2008), 176–180.
[8] J. R. L. Webb, Boundary value problems with vanishing Green’s function, Commun. Appl.Anal. 13(4) (2009), 587–595.
[9] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7(1971), 487–513.
[10] P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain Consortium
Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971), Rocky Mountain J.Math. 3 (1973), 161–202.
[11] P. J. Torres, Existence and stability of periodic solutions for second-order semilinear differential
equations with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A137 (2007), 195–201.
[12] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations
via a Krasnosel’skii fixed point theorem, J. Differential Equations 190 (2003), 643–662.
[13] P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation
based on a generalized anti-maximum principle, Math. Nachr. 251 (2003) 101–107.
[14] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of
nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal.27 (2006), 91–116.
[15] J. R. L. Webb, G. Infante and D. Franco, Positive solutions of nonlinear fourth order boundary
value problems with local and nonlocal boundary conditions, Proc. Roy. Soc. Edinburgh 138A(2008), 427–446.
[16] R. Ma and B. Thompson, Nodal solutions for nonlinear eigenvalue problems, Nonlinear Anal.
TMA 59 (2004), 707–718.