REFERENCES

[1] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign solutions of a system of Fredholm

integral equations, Acta Appl. Math. 80 (2004), 57-94.

[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,SIAM. Rev. 18 (1976), 620-709.

[3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and

applications, J. Functional Analysis 14(1973), 349-381.

[4] L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value

problems, Math. Computer Modelling 32 (2000), 529–539.

[5] D. Franco, G. Infante and D. O’Regan, Nontrivial solutions in abstract cones for Hammerstein

integral systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A 14 (2007), 837-850.

[6] D. Guo, The number of nontrivial solutions of Hammerstein nonlinear integral equations,

Chinese Ann. Math. Ser. B 7 (1986) (2), 191-204.

[7] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press,San Diego, 1988.

[8] G. Infante and P. Pietramala, Existence and multiplicity of non-negative solutions for systems

of perturbed Hammerstein integral equations, Nonlinear Anal. 71 (2009), 1301-1310.

[9] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, The

Netherlands, 1964.

[10] M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations,

Macmillan, New York, 1964

[11] K. Q. Lan, Nonzero positive solutions of systems of elliptic boundary value problems, acceptedfor publication in Proc. Amer. Math. Soc.

[12] K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J.

London Math. Soc., 63 (2001) (2), 690-704.

[13] K. Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities,

Differential Equations and Dynamical Systems 8 (2000), 175-192.

[14] K. Q. Lan and W. Lin, Multiple positive solutions of systems of Hammerstein integral equations

with applications to fractional differential equations, accepted for publication in J. LondonMath. Soc.

[15] K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with

singularities, J. Differential Equations 148 (1998), 407-421.

[16] J. Bana´s, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral.Math. Soc. Ser. A 46 (1989), 61-68.

[17] J. Bana´s and W. G. Ei-Sayed, Measures of noncompactness and solvability of an integralequations in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167(1992), 133-151.

[18] A. Karoui and A. Jawahdou, Existence and approximate Lp and continuous solutions of nonlinearintegral equations of the Hammerstein and Volterra types, Appl. Math. Comput. 216(2010),2077-2091.

[19] D. O’Regan, A note on solutions in L1[0, 1] to Hammerstein integral equations, J. IntegralEquations 9 (1997) (2), 165-178.

[20] G. Emmanuele, Integrable solutions of a functional-integral equation, J. Integraal Equations

Appl. 4 (1992), 89-94.

[21] G. Emmanuele, Integrable solutions of Hammerstein integral equations, Appl. Anal. 50 (1993),277-284.

[22] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions

of nonlinear boundary value problems of local and nonlocal type, Topol. Methods NonlinearAnal. 27 (2006)(1), 91-116.