A DISTRIBUTIONAL APPROACH TO FRAGMENTATION EQUATIONS

TitleA DISTRIBUTIONAL APPROACH TO FRAGMENTATION EQUATIONS
Publication TypeJournal Article
Year of Publication2011
AuthorsLAMB, WILSON, MCBRIDE, ADAM
Volume15
Issue4
Start Page511
Pagination10
Date Published2011
ISSN1083-2564
AMS45K05, 46F05, 47D06
Abstract

We consider a linear integro-differential equation that models multiple fragmentation with inherent mass-loss. A systematic procedure is presented for constructing a space of generalised functions Z′ in which initial-value problems involving singular initial conditions such as the Dirac delta distribution can be analysed. The procedure makes use of results on sun dual semigroups and quasi-equicontinuous semigroups on locally convex spaces. The existence and uniqueness of a distributional solution to an abstract version of the initial-value problem are established for any given initial data u0 in Z′ .

URLhttp://www.acadsol.eu/en/articles/15/4/6.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] B. F. Edwards, M. Cai, H. Han, Rate equation and scaling for fragmentation with mass loss,
Phys. Rev. A 41 (1990), 5755–5757.
[2] M. Cai, B. F. Edwards, H. Han, Exact and asymptotic scaling solutions for fragmentation
with mass loss, Phys. Rev. A 43 (1991), 656–662.
[3] J. Huang, B. F. Edwards, A. D. Levine, General solutions and scaling violation for fragmentation
with mass loss, J. Phys. A: Math. Gen. 24 (1991), 3967–3977.
[4] J. Banasiak, W. Lamb, On the application of substochastic semigroup theory to fragmentation
models with mass loss, J. Math. Anal. Appl. 284 (2003), 9–30.
[5] J. Banasiak, L. Arlotti, Positive Perturbations of Semigroups with Applications, Springer,
London, 2006.
[6] R. M. Ziff, E. D. McGrady, The kinetics of cluster fragmentation and depolymerisation, J.
Phys. A : Math. Gen. 18 (1985), 3027–3037.
[7] R. M. Ziff, E. D. McGrady, Kinetics of polymer degradation, Macromolecules 19 (1986), 2513–
2519.
[8] E. D. McGrady, R. M. Ziff, “Shattering” transition in fragmentation, Phys. Rev. Lett. 58
(1987),892–895.
[9] W. Lamb, A. C. McBride, G. C. McGuinness, Fragmentation arising from a distributional
initial condition, Math. Meth. Appl. Sci. 33 (2010), 1183–1191.
[10] G. C. McGuinness, W. Lamb, A. C. McBride, On a class of continuous fragmentation equations
with singular initial conditions, submitted.
[11] A. Belleni-Morante, W. Lamb, A. C. McBride, Photon transport problems involving a point
source, Anal. Appl. 5 (2007), 77–93.
[12] A. Belleni-Morante, W. Lamb, A. C. McBride, A photon transport problem with a timedependent
point source, Anal. Appl. 7 (2009), 1–19.
[13] K.-J. Engel, R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer,
New York, 2000.
[14] W. Lamb, D. F. McGhee, Spectral theory and functional calculus on spaces of generalized
functions, J. Math. Anal. Appl. 163 (1992), 238–260.
[15] I. M. Gel‘fand, G. E. Shilov, Generalized Functions Vol. 2, Academic Press, New York and
London, 1968.
[16] K. Yosida, Functional Analysis 6th edn., Springer-Verlag, Berlin, 1980.