REFERENCES
[1] Raghib M. Abu-Saris, Discrete boundary value problems with initial and final conditions, Methods
Appl. Anal., 11 (2004), 033-040.
[2] A. R. Aftabizadeh, A. R. S. Aizicovici, and N. H. Pavel, On a class of second-order anti-periodic
boundary value problems, J. Math. Anal. Appl. 171 (1992), 301-320.
[3] R. P. Agarwal, D. O’ Regan, Multiple Solutions for Higher-Order Difference Equations, Comput.
Math. Appl. 37 (1999), 39-48.
[4] Ravi P. Agarwal, Victoria Otero-Espinar, Kanishka Perera, Dolores R. Vivero, Existence of
multiple positive solutions for second order nonlinear dynamic BVPs by variational methods,
J. Math. Anal. Appl. 331 (2007), 1263-1274.
[5] Pierluigi Amodio, Ivonne Sgura, High-order finite difference schemes for the solution of secondorder
BVPs J. Comput. Appl. Math., 176 (2005), 59-76.
[6] D.R. Anderson, I. Rach˘unkov´a, C.C. Tisdell, Solvability of discrete Neumann boundary value
problems, J. Math. Anal. Appl. 331 (2007), 736-741.
[7] N. C. Apreutesei, On a class of difference equations of monotone type, J. Math. Anal. Appl.
288 (2003), 833-851.
[8] N. C. Apreutesei, Nonlinear Second Order Evolution equations of Monotone Type and Applications,
Pushpa Publ. House, India, 2007.
[9] V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 295-319.
[10] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International
Publishing, Leiden, 1976.
[11] J. M. Borwein, Maximality of sums of two maximal monotone operators in general Banach
space, Proc. Amer. Math. Soc. 135 (12) (2007), 3917-3924.
[12] R.E. Bruck, Periodic forcing of solutions of a boundary value problem for a second order differential
equation in Hilbert space, J. Math. Anal. Appl. 76 (1980), 159-173.
[13] Xiaochun Cai, Jianshe Yu, Existence theorems for second-order discrete boundary value problems,
J. Math. Anal. Appl. 320 (2006), 649-661.
[14] P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving
the p-Laplacian, Comput. Math. Appl., 56 (2008), 959-964.
[15] C.E. Chidume, H. Zegeye, K.R. Kazmi, Existence and convergence theorems for a class of
multi-valued variational inclusions in Banach spaces, Nonl. Analysis 59 (2004), 649- 656.
[16] Chuan Jen Chyan, Patricia J. Y. Wong, Triple Solutions of Focal Boundary Value Problems on
Time Scale, Comput. Math. Appl., 49 (2005), 963-979.
[17] Ioanna Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems,
Kluwer, London, 1990.
[18] M. Dawidowski, I. Kubiaczyk and J. Morcha lo, A discrete boundary value problem in Banach
spaces, Glas. Mat. Ser. III, 36(56)(2001), 233-239.
[19] Pavel Dr´abek, H. Bevan Thompson and Christopher Tisdell, Multipoint boundary value problems
for discrete equations, Comment. Math. Univ. Carolin., Vol. 42 (2001), No. 3, 459-468.
[20] Chenghua Gao, Existence of solutions to p-Laplacian difference equations under barrier strips
conditions, Electron. J. Diff. Eqns., Vol. 2007(2007), No. 59, 1-6.
[21] Fengjie Geng, Deming Zhu, Multiple results of p-Laplacian dynamic equations on time scales,
Appl. Math. Comput. 193 (2007), 311-320.
[22] Zhimin He, Double positive solutions of three-point boundary value problems for p-Laplacian
dynamic equations on time scales, J. Comput. Appl. Math. 182 (2005), 304-315.
[23] J. Henderson and H. B. Thompson, Existence of multiple solutions for second-order discrete
boundary value problems, Comput. Math. Appl., 43(2002), 1239-1248.
[24] D. Herreg, The use of nonequdistant mesh in difference method. (Serbian. English summary).
Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 10(1980), 102-112.
[25] Dragoslav Herceg, On a discrete analogue for boundary value problem, Univ. u Novom Sadu,
Zb. Rad. Prirod. - Mat. Fak. Ser. Mat. 23(2) (1993), 401-410.
[26] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Discuss.
Math. Differential Incl. 15 (1995), 15-20.
[27] Susan D. Lauer, Multiple solutions to a boundary value problem for an n-th order nonlinear
difference equation, Differential Equations and Computational Simulations III, Electron. J.
Differ. Equ. Conf. 01, 1997, 129-136.
[28] Yuji Liu, On Sturm-Liouville boundary value problems for second-order nonlinear functional
finite difference equations, J. Comput. Appl. Math. 216 (2008), 523-533.
[29] Shuang-Hong Ma, Jian-Ping Sun, Da-Bin Wang, Existence of positive solutions for nonlinear
dynamic systems with a parameter on a measure chain, Electron. J. Differential Equations, Vol.
2007(2007), No. 73, 1-8.
[30] G. Morosanu, Second order difference equations of monotone type, Numer. Funct. Anal. Optim.1 (1979), 441-450.
[31] G. Morosanu and D. Petrovanu, Variational solutions for elliptic boundary value problems, An.
St. Univ. ”Al. I. Cusa” Iasi, Matematica 35(1989), 237-244.
[32] A. Moudafi, On the regularization of the sum of two maximal monotone operators, Nonl.
Analysis 42 (2000), 1203-1208.
[33] M.A. Noor, K.I. Noor, Th.M. Rassias, Set-valued resolvent equations and mixed variational
inequalities, J. Math. Anal. Appl. 220 (1998), 741-759.
[34] Jian Wen Peng, Dao Li Zhu, A new system of generalized mixed quasi-variational inclusions
with (H, η)-monotone operators, J. Math. Anal. Appl. 327 (2007), 175-187.
[35] E. Poffald, S. Reich, A quasi-autonomous second-order differential inclusion, in: Trends in the
Theory and Practice of NonLinear Analysis, North-Holland, Amsterdam, 1985, 387-392.
[36] E. I. Poffald, S. Reich, A difference inclusion, Nonlinear Semigroups, Partial Differential Equations
and Attractors, 122-130, Lecture Notes in Mathematics, Vol. 1394, Springer, Berlin, 1989.
[37] Simeon Reich, Itai Shafrir, An existence theorem for a difference inclusion in general Banach
spaces, J. Math. Anal. Appl. 160 (1991), 406-412.
[38] You-Hui Su, Wan-Tong Li, Hong-Rui Sun, Positive solutions of singular p-Laplacian dynamic
equations with sign changing nonlinearity, Appl. Math. Comput., 200 (2008), 352-368.
[39] Hong-Rui Sun, Wan-Tong Li, Existence theory for positive solutions to one-dimensional pLaplacian
boundary value problems on time scales, J. Differential Equations 240 (2007), 217-248.
[40] Jian-Ping Sun, Wan-Tong Li, Existence and multiplicity of positive solutions to nonlinear firstorder
PBVPs on time scales, Comput. Math. Appl. 54 (2007), 861-871.
[41] Hong-Rui Sun, Wan-Tong Li, On the number of positive solutions of systems of nonlinear
dynamic equations on time scales, J. Comput. Appl. Math., 219 (2008), 123-133.
[42] Jian-Ping Sun, Wan-Tong Li, Existence of positive solutions of boundary value problem for a
discrete difference system, Appl. Math. Comput. 156 (2004), 857-870.
[43] Hong-Rui Sun, Lu-Tian Tang, Ying-Hai Wang, Eigenvalue problem for p-Laplacian three-point
boundary value problems on time scales, J. Math. Anal. Appl. 331 (2007), 248-262.
[44] H. B. Thompson, Topological Methods for Some Boundary Value Problems, Comput. Math.
Appl., 42 (2001), 487-495.
[45] Guoqing Zhang, Sanyang Liu, On a class of semipositone discrete boundary value problems, J.
Math. Anal. Appl. 325 (2007), 175-182.