VARIATIONAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR MONOTONE DISCRETE INCLUSIONS IN HILBERT SPACES

TitleVARIATIONAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR MONOTONE DISCRETE INCLUSIONS IN HILBERT SPACES
Publication TypeJournal Article
Year of Publication2011
AuthorsKARAKOSTAS, GEORGE, PALASKA, KONSTANTINAG
Volume15
Issue4
Start Page483
Pagination28
Date Published2011
ISSN1083-2564
AMS39A12, 39B99, 47H05, 47J30
Abstract

We use variational methods to investigate the existence and uniqueness of solutions of a two-point boundary value problem concerning a system of second order difference inclusions in a Hilbert space, when the operators involved are maximal monotone.

URLhttp://www.acadsol.eu/en/articles/15/4/5.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] Raghib M. Abu-Saris, Discrete boundary value problems with initial and final conditions, Methods
Appl. Anal., 11 (2004), 033-040.
[2] A. R. Aftabizadeh, A. R. S. Aizicovici, and N. H. Pavel, On a class of second-order anti-periodic
boundary value problems, J. Math. Anal. Appl. 171 (1992), 301-320.
[3] R. P. Agarwal, D. O’ Regan, Multiple Solutions for Higher-Order Difference Equations, Comput.
Math. Appl. 37 (1999), 39-48.
[4] Ravi P. Agarwal, Victoria Otero-Espinar, Kanishka Perera, Dolores R. Vivero, Existence of
multiple positive solutions for second order nonlinear dynamic BVPs by variational methods,
J. Math. Anal. Appl. 331 (2007), 1263-1274.
[5] Pierluigi Amodio, Ivonne Sgura, High-order finite difference schemes for the solution of secondorder
BVPs J. Comput. Appl. Math., 176 (2005), 59-76.
[6] D.R. Anderson, I. Rach˘unkov´a, C.C. Tisdell, Solvability of discrete Neumann boundary value
problems, J. Math. Anal. Appl. 331 (2007), 736-741.
[7] N. C. Apreutesei, On a class of difference equations of monotone type, J. Math. Anal. Appl.
288 (2003), 833-851.
[8] N. C. Apreutesei, Nonlinear Second Order Evolution equations of Monotone Type and Applications,
Pushpa Publ. House, India, 2007.
[9] V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 295-319.
[10] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International
Publishing, Leiden, 1976.
[11] J. M. Borwein, Maximality of sums of two maximal monotone operators in general Banach
space, Proc. Amer. Math. Soc. 135 (12) (2007), 3917-3924.
[12] R.E. Bruck, Periodic forcing of solutions of a boundary value problem for a second order differential
equation in Hilbert space, J. Math. Anal. Appl. 76 (1980), 159-173.
[13] Xiaochun Cai, Jianshe Yu, Existence theorems for second-order discrete boundary value problems,
J. Math. Anal. Appl. 320 (2006), 649-661.
[14] P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving
the p-Laplacian, Comput. Math. Appl., 56 (2008), 959-964.
[15] C.E. Chidume, H. Zegeye, K.R. Kazmi, Existence and convergence theorems for a class of
multi-valued variational inclusions in Banach spaces, Nonl. Analysis 59 (2004), 649- 656.
[16] Chuan Jen Chyan, Patricia J. Y. Wong, Triple Solutions of Focal Boundary Value Problems on
Time Scale, Comput. Math. Appl., 49 (2005), 963-979.
[17] Ioanna Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems,
Kluwer, London, 1990.
[18] M. Dawidowski, I. Kubiaczyk and J. Morcha lo, A discrete boundary value problem in Banach
spaces, Glas. Mat. Ser. III, 36(56)(2001), 233-239.
[19] Pavel Dr´abek, H. Bevan Thompson and Christopher Tisdell, Multipoint boundary value problems
for discrete equations, Comment. Math. Univ. Carolin., Vol. 42 (2001), No. 3, 459-468.
[20] Chenghua Gao, Existence of solutions to p-Laplacian difference equations under barrier strips
conditions, Electron. J. Diff. Eqns., Vol. 2007(2007), No. 59, 1-6.
[21] Fengjie Geng, Deming Zhu, Multiple results of p-Laplacian dynamic equations on time scales,
Appl. Math. Comput. 193 (2007), 311-320.
[22] Zhimin He, Double positive solutions of three-point boundary value problems for p-Laplacian
dynamic equations on time scales, J. Comput. Appl. Math. 182 (2005), 304-315.
[23] J. Henderson and H. B. Thompson, Existence of multiple solutions for second-order discrete
boundary value problems, Comput. Math. Appl., 43(2002), 1239-1248.
[24] D. Herreg, The use of nonequdistant mesh in difference method. (Serbian. English summary).
Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 10(1980), 102-112.
[25] Dragoslav Herceg, On a discrete analogue for boundary value problem, Univ. u Novom Sadu,
Zb. Rad. Prirod. - Mat. Fak. Ser. Mat. 23(2) (1993), 401-410.
[26] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Discuss.
Math. Differential Incl. 15 (1995), 15-20.
[27] Susan D. Lauer, Multiple solutions to a boundary value problem for an n-th order nonlinear
difference equation, Differential Equations and Computational Simulations III, Electron. J.
Differ. Equ. Conf. 01, 1997, 129-136.
[28] Yuji Liu, On Sturm-Liouville boundary value problems for second-order nonlinear functional
finite difference equations, J. Comput. Appl. Math. 216 (2008), 523-533.
[29] Shuang-Hong Ma, Jian-Ping Sun, Da-Bin Wang, Existence of positive solutions for nonlinear
dynamic systems with a parameter on a measure chain, Electron. J. Differential Equations, Vol.
2007(2007), No. 73, 1-8.
[30] G. Morosanu, Second order difference equations of monotone type, Numer. Funct. Anal. Optim.1 (1979), 441-450.
[31] G. Morosanu and D. Petrovanu, Variational solutions for elliptic boundary value problems, An.
St. Univ. ”Al. I. Cusa” Iasi, Matematica 35(1989), 237-244.
[32] A. Moudafi, On the regularization of the sum of two maximal monotone operators, Nonl.
Analysis 42 (2000), 1203-1208.
[33] M.A. Noor, K.I. Noor, Th.M. Rassias, Set-valued resolvent equations and mixed variational
inequalities, J. Math. Anal. Appl. 220 (1998), 741-759. 
[34] Jian Wen Peng, Dao Li Zhu, A new system of generalized mixed quasi-variational inclusions
with (H, η)-monotone operators, J. Math. Anal. Appl. 327 (2007), 175-187.
[35] E. Poffald, S. Reich, A quasi-autonomous second-order differential inclusion, in: Trends in the
Theory and Practice of NonLinear Analysis, North-Holland, Amsterdam, 1985, 387-392.
[36] E. I. Poffald, S. Reich, A difference inclusion, Nonlinear Semigroups, Partial Differential Equations
and Attractors, 122-130, Lecture Notes in Mathematics, Vol. 1394, Springer, Berlin, 1989.
[37] Simeon Reich, Itai Shafrir, An existence theorem for a difference inclusion in general Banach
spaces, J. Math. Anal. Appl. 160 (1991), 406-412.
[38] You-Hui Su, Wan-Tong Li, Hong-Rui Sun, Positive solutions of singular p-Laplacian dynamic
equations with sign changing nonlinearity, Appl. Math. Comput., 200 (2008), 352-368.
[39] Hong-Rui Sun, Wan-Tong Li, Existence theory for positive solutions to one-dimensional pLaplacian
boundary value problems on time scales, J. Differential Equations 240 (2007), 217-248.
[40] Jian-Ping Sun, Wan-Tong Li, Existence and multiplicity of positive solutions to nonlinear firstorder
PBVPs on time scales, Comput. Math. Appl. 54 (2007), 861-871.
[41] Hong-Rui Sun, Wan-Tong Li, On the number of positive solutions of systems of nonlinear
dynamic equations on time scales, J. Comput. Appl. Math., 219 (2008), 123-133.
[42] Jian-Ping Sun, Wan-Tong Li, Existence of positive solutions of boundary value problem for a
discrete difference system, Appl. Math. Comput. 156 (2004), 857-870.
[43] Hong-Rui Sun, Lu-Tian Tang, Ying-Hai Wang, Eigenvalue problem for p-Laplacian three-point
boundary value problems on time scales, J. Math. Anal. Appl. 331 (2007), 248-262.
[44] H. B. Thompson, Topological Methods for Some Boundary Value Problems, Comput. Math.
Appl., 42 (2001), 487-495.
[45] Guoqing Zhang, Sanyang Liu, On a class of semipositone discrete boundary value problems, J.
Math. Anal. Appl. 325 (2007), 175-182.