REFERENCES

[1] Z. Bai and H. Wang, On positive solutions of some nonlinear fourth-order beam equations, J.

Math. Anal. Appl. 270 (2002), 357–368.

[2] J. V. Baxley and L. J. Haywood, Nonlinear boundary value problems with multiple solutions,

Nonlinear Anal. 47 (2001), 1187–1198.

[3] J. M. Davis, L. Erbe, and J. Henderson, Multiplicity of positive solutions for higher order

Sturm-Liouville problems, Rocky Mountain J. Math. 31 (2001), 169–184.

[4] L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value

problems, Math. Comput. Model. 32 (2000), 529–539.

[5] L. Erbe and R. M. Mathsen, Positive solutions for singular nonlinear boundary value problems,

Nonlinear Anal. 46 (2001), 979–986.

[6] J. R. Graef and L. Kong, Existence results for nonlinear periodic boundary value problems,

Proc. Edinburgh Math. Soc. 52 (2009), 79–95.

[7] J. R. Graef, L. Kong, and Q. Kong, Symmetric positive solutions of nonlinear boundary value

problems, J. Math. Anal. Appl. 326 (2007), 1310–1327.

[8] J. R. Graef, C. Qian, and B. Yang, Multiple symmetric positive solutions of a class of boundary

value problems for higher order ordinary differential equations, Proc. Amer. Math. Soc, 131

(2003), 577–585.

[9] J. R. Graef and B. Yang, Existence and nonexistence of positive solutions of fourth order

nonlinear boundary value problems, Appl. Anal. 74 (2000), 201–214.

[10] Y. Guo, W. Shan, and W. Ge, Positive solutions for second-order m-point boundary value

problems, J. Comput. Appl. Math. 151 (2003), 415–424.

[11] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press,

Orlando, 1988.

[12] G. Han and Y. Wu, Nontrivial solutions of singular two-point boundary value problems with

sign-changing nonlinear terms, J. Math. Anal. Appl. 325 (2007), 1327–1338.

[13] J. Henderson and H. B. Thompson, Multiple symmetric positive solutions for a second order

boundary value problems, Proc. Amer. Math. Soc. 128 (2000), 2373–2379.

[14] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math.

Anal. Appl. 208 (1997), 252–259.

[15] L. Kong and Q. Kong, Higher order boundary value problems with nonhomogeneous boundary

conditions, Nonlinear Anal. 72 (2010), 240–261.

[16] L. Kong and J. S. W. Wong, Positive solutions for multi-point boundary value problems with

nonhomogeneous boundary conditions, J. Math. Anal. Appl. 367 (2010), 588–611.

[17] M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations,

Pergamon Press, New York, 1964.

[18] R. Ma, Positive solutions for nonhomogeneous m-point boundary value problems, Comput.

Math. Appl. 47 (2004), 689–698.

[19] R. Ma and Y. An, Global structure of positive solutions for superlinear 2mth-boundary value

problems, Czechoslovak Math. J. 60(135) (2010), 161–172.

[20] R. Ma and H. Wang, On the existence of positive solutions of fourth-order ordinary differential

equations, Appl. Anal. 59 (1995), 225–231.

[21] Y. Sun, Positive solutions for third-order three-point nonhomogeneous boundary value problems,

Appl. Math. Lett. 22 (2009), 45–51.

[22] J. Sun and G. Zhang, Nontrivial solutions of singular superlinear Sturm-Liouville problems, J.

Math. Anal. Appl. 313 (2006), 518–536.

[23] J. Sun and G. Zhang, Nontrivial solutions of singular sublinear Sturm-Liouville problems, J.

Math. Anal. Appl. 326 (2007), 242–251.

[24] J. R. L. Webb, Positive solutions of some higher order nonlocal boundary value problems,

Electron. J. Qual. Theory Differ. Equ. 2009, Special Edition I, No. 29, 15 pp.

[25] J. R. L. Webb, Nonlocal conjugate type boundary value problems of higher order, Nonlinear

Anal. 71 (2009), 1933–1940.

[26] J. R. L. Webb, Optimal constants in a nonlocal boundary value problem, Nonlinear Anal. 63

(2005), 672–685.

[27] J. R. L. Webb, Multiple positive solutions of some nonlinear heat flow problems, Discrete

Contin. Dyn. Syst. (2005), Suppl., 895–903.

[28] J. R. L. Webb and G. Infante, Non-local boundary value problems of arbitrary order, J. Lond.

Math. Soc. (2) 79 (2009), 238–258.

[29] J. R. L. Webb and G. Infante, Positive solutions of non-local boundary value problems: a

unified approach, J. London Math. Soc. (2) 74 (2006), 673–693.

[30] J. R. L. Webb and G. Infante, and D. Franco, Positive solutions of nonlinear fourth-order

boundary-value problems with local and non-local boundary conditions, Proc. Roy. Soc. Edinburgh

Sect. A 138 (2008), 427–446.

[31] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions

of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear

Anal. 27 (2006), 91–115.

[32] B. Yang, Positive solutions for a fourth order boundary value problem, Electron. J. Qual.

Theory Differ. Equ. 2005, No. 3, 17 pp.

[33] B. Yang, Positive solutions to a boundary value problem for the beam equation, Z. Anal.

Anwend. 26 (2007), 221–230.

[34] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems,

Springer-Verlag, New York, 1986.

[35] Z. Zhang and J. Wang, Positive solutions to a second-order three point boundary value problem,

J. Math. Anal. Appl. 285 (2003), 237–249.