Title | ON THE UNIQUENESS OF THE DEGREE FOR NONLINEAR FREDHOLM MAPS OF INDEX ZERO BETWEEN BANACH MANIFOLDS |
Publication Type | Journal Article |
Year of Publication | 2011 |
Authors | BENEVIERI, PIERLUIGI, FURI, MASSIMO |
Secondary Title | Communications in Applied Analysis |
Volume | 15 |
Issue | 2 |
Start Page | 203 |
Pagination | 216 |
Date Published | 04/2011 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 47A53, 47H11, 58Cxx. |
Abstract | In some previous papers we presented a fairly simple construction of a topological degree for C1 Fredholm maps of index zero between Banach manifolds which verifies the three fundamental properties of the classical degree theory: normalization, additivity and homotopy invariance. We show here that this degree is unique. Precisely, by an axiomatic approach similar to the one due to Amann-Weiss, we prove that there exists at most one real function satisfying the above properties, and this function must be integer valued.
|
URL | http://www.acadsol.eu/en/articles/15/2/6.pdf |
Short Title | ON THE UNIQUENESS OF THE DEGREE... |
Refereed Designation | Refereed |
Full Text | REFERENCES[1] H. Amann and S.A. Weiss, On the uniqueness of the topological degree, Math. Z., 130 (1973), 39–54.
[2] P. Benevieri and M. Furi, A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree theory, Ann. Sci. Math. Qu ́ebec, 22 (1998), 131–148. [3] P. Benevieri and M. Furi, On the concept of orientability for Fredholm maps between real Banach manifolds, Topol. Methods Nonlinear Anal. 16 (2000), 279–306. [4] P. Benevieri, M. Furi, M.P. Pera, M. Spadini, About the sign of oriented Fredholm operators between Banach spaces Z. Anal. Anwendungen 22, n. 3 (2003), 619–645. [5] A. Dold, Lectures on algebraic topology, Springer- Verlag, Berlin, 1972. [6] K.D. Elworthy and A.J. Tromba, Differential structures and Fredholm maps on Banach manifolds, in “Global Analysis”, S. S. Chern and S. Smale Eds., Proc. Symp. Pure Math., Vol. 15, 1970, 45–94. [7] K.D. Elworthy and A.J. Tromba, Degree theory on Banach manifolds, in “Nonlinear Functional Analysis”, F. E. Browder Ed., Proc. Symp. Pure Math., Vol. 18 (Part 1), 1970, 86–94. [8] M.P. Fitzpatrick, J. Pejsachowicz and P.J. Rabier, Orientability of Fredholm Families and Topological Degree for Orientable Nonlinear Fredholm Mappings, Journal of Functional Analysis 124 (1994), 1–39. [9] L. Fuhrer, Theorie des Abbildungsgrades in endlichdimensionalen Raumen, Dissertation, Freie Univ. Berlin, Berlin, 1972. [10] L. Fuhrer, Ein elementarer analytischer Beweis zur Eindeutigkeit des Abbildungsgrades im Rn , Math. Nachr. 54 (1972), 259–267. [11] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, Berlin, 1980. [12] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math., 87 (1965), 861–866. |