BOUNDEDNESS AND CONTINUITY PROPERTIES OF NONLINEAR COMPOSITION OPERATORS: A SURVEY

TitleBOUNDEDNESS AND CONTINUITY PROPERTIES OF NONLINEAR COMPOSITION OPERATORS: A SURVEY
Publication TypeJournal Article
Year of Publication2011
AuthorsAPPELL, J, GUANDA, N, MERENTES, N, SANCHEZ, JL
Secondary TitleCommunications in Applied Analysis
Volume15
Issue2
Start Page153
Pagination182
Date Published04/2011
Type of Workscientific: mathematics
ISSN1083–2564
AMS26A15, 26A16, 26A45, 26A46.
Abstract
In this paper we give an overview of mapping, continuity and boundedness properties of nonlinear composition operators of type Hf (t) := h(f (t)) or Hf (t) := h(t, f (t)) in the function spaces C([a, b]), C1 ([a, b]), Lipα ([a, b]), AC([a, b]), BV ([a, b]), W BVp ([a, b]), and RBVp ([a, b]).
URLhttp://www.acadsol.eu/en/articles/15/2/3.pdf
Short TitleNONLINEAR COMPOSITION OPERATORS
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. R. Akhmerov, M. I. Kamenskij, A. S. Potapov, A. E. Rodkina, B. N. Sadovskij, Measures of Noncompactness and Condensing Operators (Russian), Nauka, Novosibirsk, 1986; Engl. transl.: Birkh ̈
auser, Basel, 1993.
[2] J. Appell, Implicit function, nonlinear integral equation, and the measure of noncompactness of the superposition operator, J. Math. Appl. 83, 1 (1981), 251-263.
[3] J. Appell, Measures of noncompactness, condensing operators and fixed points: An applicationoriented survey, Fixed Point Theory (Cluj) 6 (2005), 157–229.
[4] J. Appell, N. Guanda, M. Vath, Function spaces with the Matkowski property and degeneracy phenomena for nonlinear composition operators, Fixed Point Theory (Cluj), to appear.
[5] J. Appell, N. Merentes, J. L. Sanchez, Locally Lipschitz composition operators in spaces of functions of bounded variation, Annali Mat. Pura Appl. 190, 1 (2011), 33-43.
[6] J. Appell, P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990; Paperback Re-issue: Cambridge, 2008.
[7] J. Appell, P. P. Zabrejko, On the composition operator in various functions spaces, Complex Var. Elliptic Equ. 55, 8 (2010), 727–737.
[8] J. M. Ayerbe Toledano, T. Dom ́ınguez Benavides, G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkh ̈auser, Basel, 1997.
[9] A. N. Bakhvalov, M. I. Dyachenko, K. S. Kazaryan, P. Sifuentes, P. L. Ul’janov, Real Analysis in Exercises (Russian), Fizmatlit, Moskva, 2005.
[10] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math. 60, M. Dekker, New York, 1980.
[11] M. Z. Berkolajko, On a nonlinear operator acting in generalized Holder spaces (Russian), Voronezh. Gos. Univ. Sem. Funk. Anal. 12 (1969), 96–104.
[12] M. Z. Berkolajko, On the continuity of the superposition operator acting in generalized, Holder spaces (Russian), Voronezh. Gos. Univ. Sbornik Trudov Aspir. Mat. Fak. 1 (1971), 16–24.
[13] M. Z. Berkolajko, Ya. B. Rutitskij, On operators in Holder spaces (Russian), Doklady Akad. Nauk. SSSR 192, 6 (1970), 1199–1201; Engl. transl.: Soviet Math. Doklady 11, 3 (1970), 787–789.
[14] M. Z. Berkolajko, Ya. B. Rutitskij, Operators in generalized Holder spaces (Russian), Sibir. Math. Zhurn. 12, 5 (1971), 1015–1025; Engl. transl.: Siber. Math. J. 12, 5 (1971), 731–738.
[15] G. Bourdaud, The functional calculus in Sobolev spaces, in: Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte 133, Teubner, Leipzig, 1993, pp. 127–142.
[16] G. Bourdaud, D. Kateb, Calcul fonctionnel dans certains espaces de Besov, Ann. Inst. Fourier (Grenoble) 40 (1990), 153–162.
[17] G. Bourdaud, D. Kateb, Fonctions qui op`erent sur les espaces de Besov, Proc. Amer. Math. Soc. 112 (1991), 1067–1076.
[18] G. Bourdaud, M. Lanza de Cristoforis, W. Sickel, Superposition operators and functions of bounded p-variation II, Nonlin. Anal. TMA 62 (2005), 483–517.
[19] G. Bourdaud, M. Lanza de Cristoforis, W. Sickel, Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer. 22, 2 (2006), 455–487.
[20] M. Chaika, D. Waterman, On the invariance of certain classes of functions under composition, Proc. Amer. Math. Soc. 43, 2 (1974), 345–348.
[21] A. Christie, Murder on the Orient Express, Collins Crime Club, Glasgow, 1934.
[22] J. Ciemnoczolowski, W. Orlicz, Composing functions of bounded φ-variation, Proc. Amer. Math. Soc. 96, 3 (1986), 431–436.
[23] P. Drabek, Continuity of Nemytskij’s operator in Holder spaces, Comm. Math. Univ. Carolinae 16 (1975), 37–57.
[24] M. Goebel, F. Sachweh, On the autonomous Nemytskij operator in Holder spaces, Zeitschr. Anal. Anw. 18, 2 (1999), 205–229.
[25] M. Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 83, 2 (1981), 354–356.
[26] R. Kannan, C. K. Krueger, Advanced Analysis on the Real Line, Springer, Berlin, 1996.
[27] J. Knop, On globally Lipschitzian Nemytskii operator in special Banach space of functions, Fasciculi Math. 21 (1990), 79–85.
[28] K. Lichawski, J. Matkowski, J. Mi ́s, Locally defined operators in the space of differentiable functions, Bull. Polish Acad. Sci. Math. 37 (1989), 315–325.
[29] A. G. Ljamin, On the acting problem for the Nemytskij operator in the space of functions of bounded variation (Russian), 11th School Theory Oper. Function Spaces, Chel’jabinsk (1986), 63–64.
[30] M. Lupa, Form of Lipschitzian operator of substitution in some class of functions, Zeszyty Nauk. Politech. Lodz Mat. 21 (1989), 87–96.
[31] A. Matkowska, On characterization of Lipschitzian operator of substitution in the class of Holder’s functions, Zeszyty Nauk. Politech. Lodz. Mat. 17 (1984), 81–85.
[32] A. Matkowska, J. Matkowski, N. Merentes, Remark on globally Lipschitzian composition operators, Demonstratio Math. 28, 1 (1995), 171–175.
[33] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127–132.
[34] J. Matkowski, Form of Lipschitz operators of substitution in Banach spaces of differentiable functions, Zeszyty Nauk. Politech. Lodz. Mat. 17 (1984), 5–10.
[35] J. Matkowski, On Nemytskii Lipschitzian operator, Acta Univ. Carolinae 28, 2 (1987), 79–82.
[36] J. Matkowski, On Nemytskij operators, Math. Japonica 33, 1 (1988), 81–86.
[37] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlin. Anal. TMA 30, 2 (1997), 719–726.
[38] J. Matkowski, N. Merentes, Characterization of globally Lipschitzian composition operators in the Banach space BV p 2 [a, b], Archivum Math. 28 (1992), 181–186.
[39] J. Matkowski, N. Merentes, Characterization of globally Lipschitzian composition operators in the Sobolev space W p n [a, b], Zeszyty Nauk. Politech. Lodz. Mat. 24 (1993), 90–99.
[40] J. Matkowski, J. Mi ́s, On a characterization of Lipschitzian operators of substitution in the space BV a, b , Math. Nachr. 117 (1984), 155–159.
[41] N. Merentes, Composition of functions of bounded φ-variation, P.U.M.A. Ser. B 2 (1991), 39–45.
[42] N. Merentes, On a characterization of Lipschitzian operators of substitution in the space of bounded Riesz φ-variation, Ann. Univ. Sci. Budapest 34 (1991), 139–144.
[43] N. Merentes, On the composition operator in AC[a, b], Collect. Math. 42, 1 (1991), 121–127.
[44] N. Merentes, On functions of bounded (p, 2)-variation, Collect. Math. 43, 2 (1992), 117–123.
[45] N. Merentes, S. Rivas, On characterization of the Lipschitzian composition operator between spaces of functions of bounded p-variation, Czechoslov. Math. J. 45, 4 (1995), 627–637.
[46] N. Merentes, S. Rivas, Characterization of globally Lipschitzian composition operators between set-valued functions on RV p [a, b] and RV q [a, b], Publ. Math. Debrecen 47, 1-2 (1995), 15–27.
[47] N. Merentes, S. Rivas, El operador de composicion en espacios de funciones con algun tipo de variacion acotada, Novena Escuela Venez. Mat., M ́erida (Venezuela), 1996.
[48] N. Merentes, S. Rivas, On the composition operators between spaces RV p [a, b] and RV [a, b], Sci. Math. 1, 3 (1998), 287–292.
[49] P. B. Pierce, D. Waterman, On the invariance of classes ΦBV and ΛBV under composition, Proc. Amer. Math. Soc. 132 (2003), 755–760.
[50] T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, deGruyter, Berlin, 1996.
[51] M. Schramm, Functions of bounded φ-variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc. 267, 1 (1985), 49–63.
[52] A. Sieczko, Characterization of globally Lipschitzian Nemytskii operators in the Banach space AC r−1 , Math. Nachr. 141 (1989), 7–11.
[53] D. Waterman, On Λ-bounded variation, Studia Math. 52 (1976), 33–45.
[54] L. C. Young, Sur une generalisation de la notion de variation de puissance pieme au sens de M. Wiener, et sur la convergence des s ́eries de Fourier, C. R. Acad. Sci. Paris 204 (1937), 470–472.