PROFESSOR JEFFREY R. L. WEBB

TitlePROFESSOR JEFFREY R. L. WEBB
Publication TypeJournal Article
Year of Publication2011
AuthorsEfendiev, MA, Infante, G
Secondary TitleCommunications in Applied Analysis
Volume15
Issue2
Start Pagei
Paginationx
Date Published04/2011
Type of Workscientific: mathematics
ISSN1083–2564
URLhttp://www.acadsol.eu/en/articles/15/2/1.pdf
Short TitlePROFESSOR J. R. L. WEBB
Refereed DesignationRefereed
Full Text
REFERENCES
[1] D. E. Edmunds and J. R. L. Webb, A Leray-Schauder theorem for a class of nonlinear operators, Math. Ann., 182 (1969), 207–212.
[2] J. R. L. Webb, Fixed point theorems for non-linear semicontractive operators in Banach spaces, J. London Math. Soc. (2), 1 (1969), 683–688.
[3] J. R. L. Webb, Mapping and fixed-point theorems for non-linear operators in Banach-spaces, Proc. London Math. Soc. (3), 20 (1970), 451–468.
[4] J. R. L. Webb, Topics in Nonlinear Functional Analysis, Ph.D. thesis, University of Sussex, Brighton, UK (1970).
[5] B. Calvert and J. R. L. Webb, An existence theorem for quasimonotone operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 50 (1971), 690–696.
[6] D. E. Edmunds and J. R. L. Webb, Nonlinear operator equations in Hilbert spaces, J. Math. Anal. Appl., 34 (1971), 471–478.
[7] J. R. L. Webb, A fixed point theorem and applications to functional equations in Banach spaces, Boll. Un. Mat. Ital. (4), 4 (1971), 775–788.
[8] J. R. L. Webb, On a characterisation of k-set contractions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 50 (1971), 686–689.
[9] J. R. L. Webb, Remarks on k-set contractions, Boll. Un. Mat. Ital. (4), 4 (1971), 614–629.
[10] J. R. L. Webb, Existence theorems for operators of monotone type, in Conference on the Theory of Ordinary and Partial Differential Equations (Univ. Dundee, Dundee, 1972), Springer, Berlin, 1972, pp. 358–362. Lecture Notes in Math., Vol. 280.
[11] D. E. Edmunds and J. R. L. Webb, Quasilinear elliptic problems in unbounded domains, Proc. Roy. Soc. (London) Ser. A, 334 (1973), 397–410.
[12] J. R. L. Webb, On seminorms of operators, J. London Math. Soc. (2), 7 (1973), 337–342.
[13] D. E. Edmunds, V. B. Moscatelli and J. R. L. Webb, Strongly nonlinear elliptic operators in unbounded domains, Publ. Math. Univ. Bordeaux Ann ́ee (1973/74), 6–32.
[14] D. E. Edmunds, V. B. Moscatelli and J. R. L. Webb, Op ́erateurs elliptiques fortement non lin ́eaires dans des domaines non born ́es, C. R. Acad. Sci. Paris S ́er. A, 278 (1974), 1505–1508.
[15] J. R. L. Webb, On degree theory for multivalued mappings and applications, Boll. Un. Mat. Ital. (4), 9 (1974), 137–158.
[16] J. R. L. Webb, On uniqueness of topological degree for set-valued mappings, Proc. Roy. Soc. Edinburgh Sect. A, 74 (1974/75), 225–229 (1976).
[17] J. R. L. Webb, On the Dirichlet problem for strongly non-linear elliptic operators in unbounded domains, J. London Math. Soc. (2), 10 (1975), 163–170.
[18] J. F. Toland, Global bifurcation theory via Galerkin’s method, Nonlinear Anal., 1 (1976/77), 305–317, with an appendix by J. R. L. Webb.
[19] D. E. Edmunds and J. R. L. Webb, Some generalizations of the Borsuk-Ulam theorem, Math. Proc. Cambridge Philos. Soc., 82 (1977), 119–125.
[20] J. R. L. Webb, Strongly nonlinear elliptic equations, in Journ ́ees d’Analyse Non Lineaire (Proc. Conf., Besancon, 1977), volume 665 of Lecture Notes in Math., Springer, Berlin, 1978, pp. 242–256.
[21] J. R. L. Webb, Boundary value problems for strongly nonlinear elliptic equations, J. London
Math. Soc. (2), 21 (1980), 123–132.
[22] J. R. L. Webb, On the homotopy property of degree for multivalued noncompact maps, Glasgow Math. J., 21 (1980), 125–130.
[23] J. R. L. Webb, Existence theorems for sums of K-ball contractions and accretive operators via A-proper mappings, Nonlinear Anal., 5 (1981), 891–896.
[24] J. R. L. Webb, On a property of duality mappings and the A-properness of accretive operators, Bull. London Math. Soc., 13 (1981), 235–238.
[25] J. R. L. Webb, Approximation solvability of nonlinear equations, in Nonlinear analysis, function spaces and applications, Vol. 2 (Pısek, 1982), volume 49 of Teubner-Texte zur Math., Teubner, Leipzig, 1982, pp. 234–257.
[26] J. R. L. Webb, Mappings of accretive and pseudo-A-proper type, J. Math. Anal. Appl., 85 (1982), 146–152.
[27] D. E. Edmunds and J. R. L. Webb, Remarks on nonlinear spectral theory, Boll. Un. Mat. Ital. B (6), 2 (1983), 377–390.
[28] J. R. L. Webb, A-properness and fixed points of weakly inward mappings, J. London Math. Soc. (2), 27 (1983), 141–149.
[29] J. R. L. Webb and S. C. Welsh, A-proper maps and bifurcation theory, in Ordinary and partial differential equations (Dundee, 1984), volume 1151 of Lecture Notes in Math., Springer, Berlin, 1985, pp. 342–349.
[30] J. R. L. Webb, Topological degree and A-proper operators, in Proceedings of the symposium on operator theory (Athens, 1985), volume 84, 1986, pp. 227–242.
[31] J. R. L. Webb and S. C. Welsh, Topological degree and global bifurcation, in Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), volume 45 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1986, pp. 527–531.
[32] J. R. L. Webb, Maximum principles for functionals associated with the solution of semilinear elliptic boundary value problems, Z. Angew. Math. Phys., 40 (1989), 330–338.
[33] J. R. L. Webb and S. C. Welsh, Existence and uniqueness of initial value problems for a class of second-order differential equations, J. Differential Equations, 82 (1989), 314–321.
[34] J. R. L. Webb and W. Zhao, An L p inequality, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 129–131.
[35] J. R. L. Webb and W. Zhao, On connections between set and ball measures of noncompactness, Bull. London Math. Soc., 22 (1990), 471–477.
[36] L. E. Payne and J. R. L. Webb, Comparison results in second order quasilinear Dirichlet problems, Proc. Roy. Soc. Edinburgh Sect. A, 118 (1991), 91–103.
[37] J. R. L. Webb, Functions of several real variables., Ellis Horwood Series in Mathematics and its Applications. New York etc.: Ellis Horwood,. xiii, 289 p. , 1991.
[38] J. R. L. Webb and W. Zhao, On the maximal monotonicity and the range of the sum of nonlinear maximal monotone operators, Proc. Edinburgh Math. Soc. (2), 34 (1991), 143–153.
[39] L. E. Payne and J. R. L. Webb, Spatial decay estimates for second order partial differential equations, Nonlinear Anal., 18 (1992), 143–156.
[40] Z. M. Guo and J. R. L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 189–198.
[41] J. R. L. Webb, Solutions of semilinear equations in cones and wedges, in World Congress of Nonlinear Analysts ’92, Vol. I–IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, pp. 137–147.
[42] J. R. L. Webb, Zeros of weakly inward accretive mappings via A-proper maps, in Theory and applications of nonlinear operators of accretive and monotone type, volume 178 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1996, pp. 289–297.
[43] W. Feng and J. R. L. Webb, Solvability of m-point boundary value problems with nonlinear growth, J. Math. Anal. Appl., 212 (1997), 467–480.
[44] W. Feng and J. R. L. Webb, Solvability of three point boundary value problems at resonance, in Proceedings of the Second World Congress of Nonlinear Analysts, Part 6 (Athens, 1996), volume 30, 1997, pp. 3227–3238.
[45] W. Feng and J. R. L. Webb, Surjectivity results for nonlinear mappings without oddness conditions, Comment. Math. Univ. Carolin., 38 (1997), 15–28.
[46] K. Q. Lan and J. R. L. Webb, A fixed point index for generalized inward mappings of condensing type, Trans. Amer. Math. Soc., 349 (1997), 2175–2186.
[47] K. Q. Lan and J. R. L. Webb, A fixed point index for weakly inward A-proper maps, Nonlinear Anal., 28 (1997), 315–325.
[48] W. V. Petryshyn and J. R. L. Webb, Existence and multiplicity results for nonstandard semilinear biharmonic boundary value problems, Nonlinear Anal., 28 (1997), 965–981.
[49] J. R. L. Webb and K. Q. Lan, Positive solutions and the theory of fixed point index, Nonlinear Bound. Value Probl., 7 (1997), 189–197.
[50] K. Q. Lan and J. R. L. Webb, New fixed point theorems for a family of mappings and applications to problems on sets with convex sections, Proc. Amer. Math. Soc., 126 (1998), 1127–1132.
[51] K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407–421.
[52] K. Q. Lan and J. R. L. Webb, Variational inequalities and fixed point theorems for PM-maps, J. Math. Anal. Appl., 224 (1998), 102–116.
[53] W. Bian and J. R. L. Webb, Constrained open mapping theorems and applications, J. London Math. Soc. (2), 60 (1999), 897–911.
[54] W. Bian and J. R. L. Webb, Solutions of nonlinear evolution inclusions, Nonlinear Anal., 37 (1999), 915–932.
[55] K. Q. Lan and J. R. L. Webb, A-properness and fixed point theorems for dissipative type maps, Abstr. Appl. Anal., 4 (1999), 83–100.
[56] J. R. L. Webb, An extension of Gronwall’s inequality., Nonlinear Bound. Value Probl., 9 (1999), 196–204.
[57] W. Feng and J. R. L. Webb, A spectral theory for semilinear operators and its applications, in Recent trends in nonlinear analysis, volume 40 of Progr. Nonlinear Differential Equations Appl., Birkhauser, Basel, 2000, pp. 149–163.
[58] J. R. L. Webb, Positive solutions of a three point boundary value problem., Nonlinear Bound. Value Probl., 10 (2000), 208–212.
[59] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index theory, in Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), volume 47, 2001, pp. 4319–4332.
[60] Z. Guo and J. R. L. Webb, Large and small solutions of a class of quasilinear elliptic eigenvalue problems, J. Differential Equations, 180 (2002), 1–50.
[61] G. Infante and J. R. L. Webb, A finite-dimensional approach to nonlinear spectral theory, Nonlinear Anal., 51 (2002), 171–188.
[62] G. Infante and J. R. L. Webb, Nonzero solutions of Hammerstein integral equations with discontinuous kernels, J. Math. Anal. Appl., 272 (2002), 30–42.
[63] K. Q. Lan and J. R. L. Webb, A-properness of contractive and condensing maps, Nonlinear Anal., 49 (2002), 885–895.
[64] Z. Guo and J. R. L. Webb, Profile of solutions with sharp layers to some singularly perturbed quasilinear Dirichlet problems, Commun. Contemp. Math., 5 (2003), 883–920.
[65] G. Infante and J. R. L. Webb, Positive solutions of some nonlocal boundary value problems, Abstr. Appl. Anal. (2003), 1047–1060.
[66] G. Infante and J. R. L. Webb, Three-point boundary value problems with solutions that change sign, J. Integral Equations Appl., 15 (2003), 37–57.
[67] J. R. L. Webb, Extensions of Gronwall’s inequality with logarithmic terms., Barletta, Elisabetta (ed.), Lecture notes of Seminario Interdisciplinare di Matematica. Vol. II. Potenza: Universita degli Studi della Basilicata, Dipartimento di Matematica. 149-159 (2003).
[68] J. R. L. Webb, Remarks on positive solutions of some three point boundary value problems, Discrete Contin. Dyn. Syst. (2003), 905–915, dynamical systems and differential equations (Wilmington, NC, 2002).
[69] R. A. Khan and J. R. L. Webb, Generalized quasilinearization technique for a three-point nonlinear boundary value problem, Dynam. Systems Appl., 13 (2004), 187–202.
[70] Z. Guo and J. R. L. Webb, Structure of boundary blow-up solutions for quasi-linear elliptic problems. II. Small and intermediate solutions, J. Differential Equations, 211 (2005), 187–217.
[71] Z. Guo and J. R. L. Webb, Structure of boundary blow-up solutions for quasilinear elliptic problems. I. Large and small solutions, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 615–642.
[72] J. R. L. Webb, Multiple positive solutions of some nonlinear heat flow problems, Discrete Contin. Dyn. Syst. (2005), 895–903.
[73] J. R. L. Webb, Optimal constants in a nonlocal boundary value problem, Nonlinear Anal., 63 (2005), 672–685.
[74] D. Franco and J. R. L. Webb, Collisionless orbits of singular and non singular dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 747–757.
[75] G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA Nonlinear Differential Equations Appl., 13 (2006), 249–261.
[76] G. Infante and J. R. L. Webb, Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations, Proc. Edinb. Math. Soc. (2), 49 (2006), 637–656.
[77] R. A. Khan and J. R. L. Webb, Existence of at least three solutions of a second-order threepoint boundary value problem, Nonlinear Anal., 64 (2006), 1356–1366.
[78] R. A. Khan and J. R. L. Webb, Existence of at least two solutions of second order nonlinear three point boundary value problems, Dynam. Systems Appl., 15 (2006), 119–132.
[79] J. R. L. Webb, Fixed point index and its application to positive solutions of nonlocal boundary value problems, in Seminar of Mathematical Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 181–205.
[80] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc. (2), 74 (2006), 673–693.
[81] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27 (2006), 91–115.
[82] R. A. Khan and J. R. L. Webb, Existence of at least three solutions of nonlinear three point boundary value problems with super-quadratic growth, J. Math. Anal. Appl., 328 (2007), 690–698.
[83] J. R. L. Webb, A unified approach to nonlocal boundary value problems, in Dynamic Systems and Applications. Vol. 5, Dynamic Publishers, Atlanta, GA, 2008, pp. 510–515.
[84] J. R. L. Webb, Uniqueness of the principal eigenvalue in nonlocal boundary value problems, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 177–186.
[85] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 45–67.
[86] J. R. L. Webb, G. Infante and D. Franco, Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 427–446.
[87] J. R. Graef and J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal., 71 (2009), 1542–1551.
[88] J. R. L. Webb, Boundary value problems with vanishing Green’s function, Commun. Appl. Anal., 13 (2009), 587–595.
[89] J. R. L. Webb, Higher order non-local (n − 1, 1) conjugate type boundary value problems, in Mathematical models in engineering, biology and medicine, volume 1124 of AIP Conf. Proc., Amer. Inst. Phys., Melville, NY, 2009, pp. 332–341.
[90] J. R. L. Webb, Nonlocal conjugate type boundary value problems of higher order, Nonlinear Anal., 71 (2009), 1933–1940.
[91] J. R. L. Webb, Positive solutions of some higher order nonlocal boundary value problems, Electron. J. Qual. Theory Differ. Equ. (2009), No. 29, 15.
[92] J. R. L. Webb, Remarks on u 0 -positive operators, J. Fixed Point Theory Appl., 5 (2009), 37–45.
[93] J. R. L. Webb and G. Infante, Non-local boundary value problems of arbitrary order, J. Lond. Math. Soc. (2), 79 (2009), 238–258.
[94] J. R. L. Webb and M. Zima, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Nonlinear Anal., 71 (2009), 1369–1378.
[95] J. R. L. Webb, Remarks on a non-local boundary value problem, Nonlinear Anal., 72 (2010), 1075–1077.
[96] J. R. L. Webb, Remarks on nonlocal boundary value problems at resonance, Appl. Math. Comput., 216 (2010), 497–500.
[97] J. R. L. Webb, Solutions of nonlinear equations in cones and positive linear operators, J. Lond. Math. Soc. (2), 82 (2010), 420–436.
[98] J. R. L. Webb and G. Infante, Semi-positone nonlocal boundary value problems of arbitrary order, Commun. Pure Appl. Anal., 9 (2010), 563–581.
[99] J. R. L. Webb, Positive solutions of a boundary value problem with integral boundary conditions, Electron. J. Differential Equations (2011), No. 55, 10 pp. (electronic).