Title | ON THE GLOBAL ASYMPTOTIC STABILITY OF THE DIFFERENCE EQUATION |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | VAN KHUONG, VU, PHONG, MAINAM |
Secondary Title | Communications in Applied Analysis |
Volume | 14 |
Issue | 4 |
Start Page | 597 |
Pagination | 606 |
Date Published | 12/2010 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 39A10. |
Abstract | We investigate the dynamical behavior of the following fourth-order rational differ- where a ∈ [0, ∞) and the initial values x−3 , x−2 , x−1 , x0 ∈ (0, ∞). We find that the successive lengths |
URL | http://www.acadsol.eu/en/articles/14/4/12.pdf |
Short Title | ON THE GLOBAL ASYMPTOTIC STABILITY |
Refereed Designation | Refereed |
Full Text | REFERENCES[1] R. P. Agarwal, Difference Equations and Inequalities, Second Ed. Dekker, New York, 1992, 2000.
[2] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, Dordrecht, 1993. [3] M. R. S. Kulenovi ́c, G. Ladas, L. F. Martins, I. W. Rodrignes, The dynamics of x n+1 = : Facts and conjectures, Comput. Math. Appl. 45 (2003), 1087–1099. [4] G. Ladas, Open problems and conjectures, J. Difference Equa. Appl. 2 (1996), 449–452. [5] T. Nesemann, Positive nonlinear difference equations: some results and applications, Nonlinear Anal. 47 (2001), 4707–4717. [6] A. M. Amleh, N. Kruse, G. Ladas, On a class of difference equations with strong negative feedback, J. Differ. Equations Appl. 5 (1999), 497–515. [7] G. Ladas, Progress report on , J. Difference Equa. Appl. 1 (1995), 211–215. [8] S. Stevic, On the recursive sequence , Appl. Math. Lett. 15 (2002), 305–308. [9] A. M. Amleh, E. A. Grove, D. A. Georgiou, G. Ladas, On the recursive sequence x n+1 =, J. Math. Anal. Appl. 233 (1999), 790–798. [10] C. Gibbon, M. R. S. Kulenovi ́c, G. Ladas, On the recursive sequence , Math. Sci. Res. Hot-line 4 (2000), 1–11. [11] X. Li, D. Zhu, Global asymptotic stability in a rational equation, J. Difference. Equa. Appl. 9 (2003), 833–839. [12] X. Li, D. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput. 150 (2004), 481–492. [13] X. Li, D. Zhu, Global asymptotic stability of a nonlinear recursive sequence, Appl. Math. Appl. 17 (2004), 833–838. [14] X. Li, D. Zhu, Two rational recursive sequence, Comput. Math. Appl. 47 (2004), 1487–1494. [15] X. Li, D. Zhu, Global asymptotic stability for a nonlinear delay difference equation, Appl. Math. J. Chinese Univ. Ser. B 17 (2002), 183–188. [16] X. Li, G. Xiao, et al, A conjecture by G. Ladas, Appl. Math. J. Chinese Univ. Ser. B 13 (1998), 39–44. [17] X. Li, Boundedness and persistence and global asymptotic stability for a kind of delay difference equations with higher order, Appl. Math. Mech. (English) 23 (2003), 1331–1338. [18] X. Li, G. Xiao, et al, Periodicity and strict oscillation for generalized Lyness equations, Appl. Math. Mech. (English) 21 (2000), 455–460. [19] X. Li, Qualitative properties for a fourth-order rational difference equation, J. Math. Anal. Appl. 311 (2005), 103–111. [20] X. Li, The rule of trajectory structure and global asymptotic stability for a fourth-order rational difference equation, J. Korean Math. Soc. 44 (2007), 787–797. [21] L. Zhang, Hai-Feng Hua, Li-Ming Miao and Hong Xiang, Dinamical behavior of a third-order rational difference equation, Appl. Math. E-Notes 6 (2006), 268–275. |